TY - JOUR
T1 - Overview of the JET preparation for deuterium–tritium operation with the ITER like-wall
JF - Nuclear Fusion
Y1 - 2019
A1 - Joffrin, E.
A1 - Abduallev, S.
A1 - Abhangi, M
A1 - Abreu, P.
A1 - Afanasev, V.
A1 - Citrin, J.
A1 - Ho, A.
A1 - Hogeweij, G. M. D.
A1 - Marin, M.
A1 - G. van Rooij
A1 - Shumack, A. E.
A1 - Jaulmes, F.
A1 - Felici, F.
A1 - den Harder, N.
A1 - Tsalas, M.
A1 - Afzal, M.
A1 - Aggarwal, K. M.
A1 - Ahlgren, T.
A1 - Aho-Mantila, L.
A1 - Aiba, N.
A1 - et al.
AB - For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D–T mixtures since 1997 and the first ever D–T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D–T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D–T preparation. This intense preparation includes the review of the physics basis for the D–T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D–T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfvèn eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D–T campaign provides an incomparable source of information and a basis for the future D–T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
VL - 59
IS - 11
U1 - FP
U2 - IMT
U5 - 307a9a4ea8f67c2769e405c252ba0db4
ER -
TY - JOUR
T1 - Progress at JET in integrating ITER-relevant core and edge plasmas within the constraints of an ITER-like wall
JF - Plasma Physics and Controlled Fusion
Y1 - 2015
A1 - Giroud, C.
A1 - Jachmich, S.
A1 - Jacquet, P.
A1 - Jarvinen, A.
A1 - Lerche, E.
A1 - Rimini, F.
A1 - Aho-Mantila, L.
A1 - Aiba, N.
A1 - Balboa, I.
A1 - da Silva Aresta Belo, P.
A1 - Angioni, C.
A1 - Beurskens, M.
A1 - Brezinsek, S.
A1 - Casson, F. J.
A1 - Coffey, I.
A1 - Cunningham, G.
A1 - Delabie, E.
A1 - Devaux, S.
A1 - Drewelow, P.
A1 - Frassinetti, L.
A1 - Figueiredo, A.
A1 - Huber, A.
A1 - Hillesheim, J.
A1 - Garzotti, L.
A1 - Goniche, M.
A1 - Groth, M.
A1 - Hyun-Tae Kim
A1 - Leyland, M.
A1 - Lomas, P.
A1 - Maddison, G.
A1 - Marsen, S.
A1 - Matthews, G.
A1 - Meigs, A.
A1 - Menmuir, S.
A1 - Putterich, T.
A1 - G. van Rooij
A1 - Saarelma, S.
A1 - Stamp, M.
A1 - Urano, H.
A1 - Webster, A.
A1 - JET-EFDA Contributors
AB - This paper reports the progress made at JET-ILW on integrating the requirements of the reference ITER baseline scenario with normalized confinement factor of 1, at a normalized pressure of 1.8 together with partially detached divertor whilst maintaining these conditions over many energy confinement times. The 2.5 MA high triangularity ELMy H-modes are studied with two different divertor configurations with D-gas injection and nitrogen seeding. The power load reduction with N seeding is reported. The relationship between an increase in energy confinement and pedestal pressure with triangularity is investigated. The operational space of both plasma configurations is studied together with the ELM energy losses and stability of the pedestal of unseeded and seeded plasmas. The achievement of stationary plasma conditions over many energy confinement times is also reported.
VL - 57
UR - http://www.iop.org/Jet/fulltext/EFDP14021.pdf
IS - 3
U1 - FP
U2 - PDG
U5 - 4b7265a10a94f029cf4f14cd047251e2
ER -
TY - JOUR
T1 - Overview of ASDEX Upgrade results
JF - Nuclear Fusion
Y1 - 2013
A1 - Stroth, U.
A1 - Adamek, J.
A1 - Aho-Mantila, L.
A1 - Akaslompolo, S.
A1 - Amdor, C.
A1 - Angioni, C.
A1 - Balden, M.
A1 - Bardin, S.
A1 - L. Barrera Orte
A1 - Behler, K.
A1 - Belonohy, E.
A1 - Bergmann, A.
A1 - Bernert, M.
A1 - Bilato, R.
A1 - Birkenmeier, G.
A1 - Bobkov, V.
A1 - Boom, J.
A1 - Bottereau, C.
A1 - Bottino, A.
A1 - Braun, F.
A1 - Brezinsek, S.
A1 - Brochard, T.
A1 - M. Brüdgam
A1 - Buhler, A.
A1 - Burckhart, A.
A1 - Casson, F. J.
A1 - Chankin, A.
A1 - Chapman, I.
A1 - Clairet, F.
A1 - Classen, I.G.J.
A1 - Coenen, J. W.
A1 - Conway, G. D.
A1 - Coster, D. P.
A1 - Curran, D.
A1 - da Silva, F.
A1 - P. de Marné
A1 - D'Inca, R.
A1 - Douai, D.
A1 - Drube, R.
A1 - Dunne, M.
A1 - Dux, R.
A1 - Eich, T.
A1 - Eixenberger, H.
A1 - Endstrasser, N.
A1 - Engelhardt, K.
A1 - Esposito, B.
A1 - Fable, E.
A1 - Fischer, R.
A1 - H. Fünfgelder
A1 - Fuchs, J. C.
A1 - K. Gál
A1 - M. García Muñoz
A1 - Geiger, B.
A1 - Giannone, L.
A1 - T. Görler
A1 - da Graca, S.
A1 - Greuner, H.
A1 - Gruber, O.
A1 - Gude, A.
A1 - Guimarais, L.
A1 - S. Günter
A1 - Haas, G.
A1 - Hakola, A. H.
A1 - Hangan, D.
A1 - Happel, T.
A1 - T. Härtl
A1 - Hauff, T.
A1 - Heinemann, B.
A1 - Herrmann, A.
A1 - Hobirk, J.
A1 - H. Höhnle
A1 - M. Hölzl
A1 - Hopf, C.
A1 - Houben, A.
A1 - Igochine, V.
A1 - Ionita, C.
A1 - Janzer, A.
A1 - Jenko, F.
A1 - Kantor, M.
A1 - C.-P. Käsemann
A1 - Kallenbach, A.
A1 - S. Kálvin
A1 - Kantor, M.
A1 - Kappatou, A.
A1 - Kardaun, O.
A1 - Kasparek, W.
A1 - Kaufmann, M.
A1 - Kirk, A.
A1 - H.-J. Klingshirn
A1 - Kocan, M.
A1 - Kocsis, G.
A1 - Konz, C.
A1 - Koslowski, R.
A1 - Krieger, K.
A1 - Kubic, M.
A1 - Kurki-Suonio, T.
A1 - Kurzan, B.
A1 - Lackner, K.
A1 - Lang, P. T.
A1 - Lauber, P.
A1 - Laux, M.
A1 - Lazaros, A.
A1 - Leipold, F.
A1 - Leuterer, F.
A1 - Lindig, S.
A1 - Lisgo, S.
A1 - Lohs, A.
A1 - Lunt, T.
A1 - Maier, H.
A1 - Makkonen, T.
A1 - Mank, K.
A1 - M.-E. Manso
A1 - Maraschek, M.
A1 - Mayer, M.
A1 - McCarthy, P. J.
A1 - McDermott, R.
A1 - Mehlmann, F.
A1 - Meister, H.
A1 - Menchero, L.
A1 - Meo, F.
A1 - Merkel, P.
A1 - Merkel, R.
A1 - Mertens, V.
A1 - Merz, F.
A1 - Mlynek, A.
A1 - Monaco, F.
A1 - Müller, S.
A1 - H.W. Müller
A1 - M. Münich
A1 - Neu, G.
A1 - Neu, R.
A1 - Neuwirth, D.
A1 - Nocente, M.
A1 - Nold, B.
A1 - Noterdaeme, J. M.
A1 - Pautasso, G.
A1 - Pereverzev, G.
A1 - B. Plöckl
A1 - Podoba, Y.
A1 - Pompon, F.
A1 - Poli, E.
A1 - Polozhiy, K.
A1 - Potzel, S.
A1 - M. J. Pueschel
A1 - Putterich, T.
A1 - Rathgeber, S. K.
A1 - Raupp, G.
A1 - Reich, M.
A1 - Reimold, F.
A1 - Ribeiro, T.
A1 - Riedl, R.
A1 - Rohde, V.
A1 - G. J. van Rooij
A1 - Roth, J.
A1 - Rott, M.
A1 - Ryter, F.
A1 - Salewski, M.
A1 - Santos, J.
A1 - Sauter, P.
A1 - Scarabosio, A.
A1 - Schall, G.
A1 - Schmid, K.
A1 - Schneider, P. A.
A1 - Schneider, W.
A1 - Schrittwieser, R.
A1 - Schubert, M.
A1 - Schweinzer, J.
A1 - Scott, B.
A1 - Sempf, M.
A1 - Sertoli, M.
A1 - Siccinio, M.
A1 - Sieglin, B.
A1 - Sigalov, A.
A1 - Silva, A.
A1 - Sommer, F.
A1 - A. Stäbler
A1 - Stober, J.
A1 - Streibl, B.
A1 - Strumberger, E.
A1 - Sugiyama, K.
A1 - Suttrop, W.
A1 - Tala, T.
A1 - Tardini, G.
A1 - Teschke, M.
A1 - Tichmann, C.
A1 - Told, D.
A1 - Treutterer, W.
A1 - Tsalas, M.
A1 - VanZeeland, M. A.
A1 - Varela, P.
A1 - Veres, G.
A1 - Vicente, J.
A1 - Vianello, N.
A1 - Vierle, T.
A1 - Viezzer, E.
A1 - Viola, B.
A1 - Vorpahl, C.
A1 - Wachowski, M.
A1 - Wagner, D.
A1 - Wauters, T.
A1 - Weller, A.
A1 - Wenninger, R.
A1 - Wieland, B.
A1 - Willensdorfer, M.
A1 - Wischmeier, M.
A1 - Wolfrum, E.
A1 - E. Würsching
A1 - Yu, Q.
A1 - Zammuto, I.
A1 - Zasche, D.
A1 - Zehetbauer, T.
A1 - Zhang, Y.
A1 - Zilker, M.
A1 - Zohm, H.
AB - The medium size divertor tokamak ASDEX Upgrade (major and minor radii 1.65 m and 0.5 m, respectively, magnetic-field strength 2.5 T) possesses flexible shaping and versatile heating and current drive systems. Recently the technical capabilities were extended by increasing the electron cyclotron resonance heating (ECRH) power, by installing 2 × 8 internal magnetic perturbation coils, and by improving the ion cyclotron range of frequency compatibility with the tungsten wall. With the perturbation coils, reliable suppression of large type-I edge localized modes (ELMs) could be demonstrated in a wide operational window, which opens up above a critical plasma pedestal density. The pellet fuelling efficiency was observed to increase which gives access to H-mode discharges with peaked density profiles at line densities clearly exceeding the empirical Greenwald limit. Owing to the increased ECRH power of 4 MW, H-mode discharges could be studied in regimes with dominant electron heating and low plasma rotation velocities, i.e. under conditions particularly relevant for ITER. The ion-pressure gradient and the neoclassical radial electric field emerge as key parameters for the transition. Using the total simultaneously available heating power of 23 MW, high performance discharges have been carried out where feed-back controlled radiative cooling in the core and the divertor allowed the divertor peak power loads to be maintained below 5 MW m −2 . Under attached divertor conditions, a multi-device scaling expression for the power-decay length was obtained which is independent of major radius and decreases with magnetic field resulting in a decay length of 1 mm for ITER. At higher densities and under partially detached conditions, however, a broadening of the decay length is observed. In discharges with density ramps up to the density limit, the divertor plasma shows a complex behaviour with a localized high-density region in the inner divertor before the outer divertor detaches. Turbulent transport is studied in the core and the scrape-off layer (SOL). Discharges over a wide parameter range exhibit a close link between core momentum and density transport. Consistent with gyro-kinetic calculations, the density gradient at half plasma radius determines the momentum transport through residual stress and thus the central toroidal rotation. In the SOL a close comparison of probe data with a gyro-fluid code showed excellent agreement and points to the dominance of drift waves. Intermittent structures from ELMs and from turbulence are shown to have high ion temperatures even at large distances outside the separatrix.
VL - 53
UR - http://hdl.handle.net/11858/00-001M-0000-0026-E166-7
IS - 10
U1 - FP
U2 - PDG
U5 - 0b5b08fdc590c85cc01e6d1db1958848
ER -
TY - JOUR
T1 - Tungsten divertor erosion in all metal devices: Lessons from the ITER like wall of JET
JF - Journal of Nuclear Materials
Y1 - 2013
A1 - G. J. van Rooij
A1 - Coenen, J. W.
A1 - Aho-Mantila, L.
A1 - Brezinsek, S.
A1 - Clever, M.
A1 - Dux, R.
A1 - Groth, M.
A1 - Krieger, K.
A1 - Marsen, S.
A1 - Matthews, G. F.
A1 - Meigs, A.
A1 - Neu, R.
A1 - Potzel, S.
A1 - Putterich, T.
A1 - Rapp, J.
A1 - Stamp, M. F.
AB - Abstract Tungsten erosion in the outer divertor of the JET ITER like wall was quantified by spectroscopy. Effective sputtering yields of typically 10−4 were measured in L-mode at ∼30 eV attached divertor conditions and beryllium was identified as the main cause of sputtering. The signature of prompt redeposition was observed in the analysis of WI 400.9 nm and WII 364 nm line ratios and indicative of >50% redeposition fractions. Inter- and intra-ELM sputtering were compared for an example of 10 Hz ELMs with 13 MW NBI heating, in which intra-ELM sputtering was found to dominate by a factor of 5. Nitrogen seeding initially increased the tungsten sputtering threefold due to higher extrinsic impurity levels and effectively reduced the tungsten sputtering when the divertor plasma temperature was decreased from the initial 25 eV down to 15 eV.
VL - 438, Supplement
UR - http://www.sciencedirect.com/science/article/pii/S0022311513000159
N1 - Proceedings of the 20th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices
U1 - PSI
U2 - PSI-E
U5 - 8566bd409d0b7b5a16db6ff2574c243e
ER -
TY - JOUR
T1 - Overview of ASDEX Upgrade results
JF - Nuclear Fusion
Y1 - 2011
A1 - Kallenbach, A.
A1 - Adamek, J.
A1 - Aho-Mantila, L.
A1 - Akaslompolo, S.
A1 - Angioni, C.
A1 - Atanasiu, C. V.
A1 - Balden, M.
A1 - Behler, K.
A1 - Belonohy, E.
A1 - Bergmann, A.
A1 - Bernert, M.
A1 - Bilato, R.
A1 - Bobkov, V.
A1 - Boom, J.
A1 - Bottino, A.
A1 - Braun, F.
A1 - Brudgam, M.
A1 - Buhler, A.
A1 - Burckhart, A.
A1 - Chankin, A.
A1 - Classen, I.G.J.
A1 - Conway, G. D.
A1 - Coster, D. P.
A1 - de Marne, P.
A1 - D'Inca, R.
A1 - Drube, R.
A1 - Dux, R.
A1 - Eich, T.
A1 - Endstrasser, N.
A1 - Engelhardt, K.
A1 - Esposito, B.
A1 - Fable, E.
A1 - Fahrbach, H. U.
A1 - Fattorini, L.
A1 - Fischer, R.
A1 - Flaws, A.
A1 - Funfgelder, H.
A1 - Fuchs, J. C.
A1 - Gal, K.
A1 - Munoz, M. G.
A1 - Geiger, B.
A1 - Adamov, M. G.
A1 - Giannone, L.
A1 - Giroud, C.
A1 - Gorler, T.
A1 - da Graca, S.
A1 - Greuner, H.
A1 - Gruber, O.
A1 - Gude, A.
A1 - Gunter, S.
A1 - Haas, G.
A1 - Hakola, A. H.
A1 - Hangan, D.
A1 - Happel, T.
A1 - Hauff, T.
A1 - Heinemann, B.
A1 - Herrmann, A.
A1 - Hicks, N.
A1 - Hobirk, J.
A1 - Hohnle, H.
A1 - Holzl, M.
A1 - Hopf, C.
A1 - Horton, L.
A1 - Huart, M.
A1 - Igochine, V.
A1 - Ionita, C.
A1 - Janzer, A.
A1 - Jenko, F.
A1 - Kasemann, C. P.
A1 - Kalvin, S.
A1 - Kardaun, O.
A1 - Kaufmann, M.
A1 - Kirk, A.
A1 - Klingshirn, H. J.
A1 - Kocan, M.
A1 - Kocsis, G.
A1 - Kollotzek, H.
A1 - Konz, C.
A1 - Koslowski, R.
A1 - Krieger, K.
A1 - Kurki-Suonio, T.
A1 - Kurzan, B.
A1 - Lackner, K.
A1 - Lang, P. T.
A1 - Lauber, P.
A1 - Laux, M.
A1 - Leipold, F.
A1 - Leuterer, F.
A1 - Lohs, A.
A1 - N C Luhmann Jr.
A1 - Lunt, T.
A1 - Lyssoivan, A.
A1 - Maier, H.
A1 - Maggi, C.
A1 - Mank, K.
A1 - Manso, M. E.
A1 - Maraschek, M.
A1 - Martin, P.
A1 - Mayer, M.
A1 - McCarthy, P. J.
A1 - McDermott, R.
A1 - Meister, H.
A1 - Menchero, L.
A1 - Meo, F.
A1 - Merkel, P.
A1 - Merkel, R.
A1 - Mertens, V.
A1 - Merz, F.
A1 - Mlynek, A.
A1 - Monaco, F.
A1 - Muller, H. W.
A1 - Munich, M.
A1 - Murmann, H.
A1 - Neu, G.
A1 - Neu, R.
A1 - Nold, B.
A1 - Noterdaeme, J. M.
A1 - Park, H. K.
A1 - Pautasso, G.
A1 - Pereverzev, G.
A1 - Podoba, Y.
A1 - Pompon, F.
A1 - Poli, E.
A1 - Polochiy, K.
A1 - Potzel, S.
A1 - Prechtl, M.
A1 - M. J. Pueschel
A1 - Putterich, T.
A1 - Rathgeber, S. K.
A1 - Raupp, G.
A1 - Reich, M.
A1 - Reiter, B.
A1 - Ribeiro, T.
A1 - Riedl, R.
A1 - Rohde, V.
A1 - Roth, J.
A1 - Rott, M.
A1 - Ryter, F.
A1 - Sandmann, W.
A1 - Santos, J.
A1 - Sassenberg, K.
A1 - Sauter, P.
A1 - Scarabosio, A.
A1 - Schall, G.
A1 - Schmid, K.
A1 - Schneider, P. A.
A1 - Schneider, W.
A1 - Schramm, G.
A1 - Schrittwieser, R.
A1 - Schweinzer, J.
A1 - Scott, B.
A1 - Sempf, M.
A1 - Serra, F.
A1 - Sertoli, M.
A1 - Siccinio, M.
A1 - Sigalov, A.
A1 - Silva, A.
A1 - Sips, A.C.C.
A1 - Sommer, F.
A1 - Stabler, A.
A1 - Stober, J.
A1 - Streibl, B.
A1 - Strumberger, E.
A1 - Sugiyama, K.
A1 - Suttrop, W.
A1 - Szepesi, T.
A1 - Tardini, G.
A1 - Tichmann, C.
A1 - Told, D.
A1 - Treutterer, W.
A1 - Urso, L.
A1 - Varela, P.
A1 - Vincente, J.
A1 - Vianello, N.
A1 - Vierle, T.
A1 - Viezzer, E.
A1 - Vorpahl, C.
A1 - Wagner, D.
A1 - Weller, A.
A1 - Wenninger, R.
A1 - Wieland, B.
A1 - Wigger, C.
A1 - Willensdorfer, M.
A1 - Wischmeier, M.
A1 - Wolfrum, E.
A1 - Wursching, E.
A1 - Yadikin, D.
A1 - Yu, Q.
A1 - Zammuto, I.
A1 - Zasche, D.
A1 - Zehetbauer, T.
A1 - Zhang, Y.
A1 - Zilker, M.
A1 - Zohm, H.
KW - PHYSICS
KW - REFLECTOMETRY
KW - TOKAMAK
AB - The ASDEX Upgrade programme is directed towards physics input to critical elements of the ITER design and the preparation of ITER operation, as well as addressing physics issues for a future DEMO design. After the finalization of the tungsten coating of the plasma facing components, the re-availability of all flywheel-generators allowed high-power operation with up to 20 MW heating power at I(p) up to 1.2 MA. Implementation of alternative ECRH schemes (140 GHz O2- and X3-mode) facilitated central heating above n(e) = 1.2 x 10(20) m(-3) and low q(95) operation at B(t) = 1.8 T. Central O2-mode heating was successfully used in high P/R discharges with 20 MW total heating power and divertor load control with nitrogen seeding. Improved energy confinement is obtained with nitrogen seeding both for type-I and type-III ELMy conditions. The main contributor is increased plasma temperature, no significant changes in the density profile have been observed. This behaviour may be explained by higher pedestal temperatures caused by ion dilution in combination with a pressure limited pedestal and hollow nitrogen profiles. Core particle transport simulations with gyrokinetic calculations have been benchmarked by dedicated discharges using variations of the ECRH deposition location. The reaction of normalized electron density gradients to variations of temperature gradients and the T(e)/T(i) ratio could be well reproduced. Doppler reflectometry studies at the L-H transition allowed the disentanglement of the interplay between the oscillatory geodesic acoustic modes, turbulent fluctuations and the mean equilibrium E x B flow in the edge negative E(r) well region just inside the separatrix. Improved pedestal diagnostics revealed also a refined picture of the pedestal transport in the fully developed H-mode type-I ELM cycle. Impurity ion transport turned out to be neoclassical in between ELMs. Electron and energy transport remain anomalous, but exhibit different recovery time scales after an ELM. After recovery of the pre-ELM profiles, strong fluctuations develop in the gradients of n(e) and T(e). The occurrence of the next ELM cannot be explained by the local current diffusion time scale, since this turns out to be too short. Fast ion losses induced by shear Alfven eigenmodes have been investigated by time-resolved energy and pitch angle measurements. This allowed the separation of the convective and diffusive loss mechanisms.
VL - 51
SN - 0029-5515
IS - 9
N1 - ISI Document Delivery No.: 818DPTimes Cited: 1Cited Reference Count: 45SI
U1 - FP
U2 - PDG
U5 - a193177a90d5b600862ca1e40bcc67af
ER -