TY - JOUR
T1 - Plasma–wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification
JF - Nuclear Fusion
Y1 - 2017
A1 - Brezinsek, S.
A1 - Coenen, J. W.
A1 - Schwartz-Selinger, T.
A1 - Schmid, K.
A1 - Kirschner, A.
A1 - Hakola, A.
A1 - Tabares, F. L.
A1 - van der Meiden, H. J.
A1 - Mayoral, M.
A1 - Reinhart, M.
A1 - Tsitrone, E.
A1 - Vernimmen, J. W. M.
A1 - Morgan, T. W.
A1 - Ahlgren, T.
A1 - Aints, M.
A1 - Airila, M.
A1 - Almaviva, S.
A1 - Alves, E.
A1 - Angot, T.
A1 - Anita, V.
A1 - R. Arredondo Parra
A1 - Aumayr, F.
A1 - Balden, M.
A1 - Bauer, J.
A1 - Ben Yaala, M.
A1 - Berger, B. M.
A1 - Bisson, R.
A1 - Björkas, C.
A1 - Bogdanovic Radovic, I.
A1 - Borodin, D.
A1 - Bucalossi, J.
A1 - Butikova, J.
A1 - Butoi, B.
A1 - Cadez, I.
A1 - Caniello, R.
A1 - Caneve, L.
A1 - Cartry, G.
A1 - Catarino, N.
A1 - Čekada, M.
A1 - Ciraolo, G.
A1 - Ciupinski, L.
A1 - Colao, F.
A1 - Corre, Y.
A1 - Costin, C.
A1 - Craciunescu, T.
A1 - Cremona, A.
A1 - de Angeli, M.
A1 - de Castro, A.
A1 - Dejarnac, R.
A1 - Dellasega, D.
A1 - Dinca, P.
A1 - Dittmar, T.
A1 - Dobrea, C.
A1 - Hansen, P.
A1 - Drenik, A.
A1 - Eich, T.
A1 - Elgeti, S.
A1 - Falie, D.
A1 - Fedorczak, N.
A1 - Ferro, Y.
A1 - Fornal, T.
A1 - Fortuna, E.
A1 - Gao, L.
A1 - Gasior, P.
A1 - Gherendi, M.
A1 - Ghezzi, F.
A1 - Gosar, Z.
A1 - Greuner, H.
A1 - Grigore, E.
A1 - Grisolia, C.
A1 - Groth, M.
A1 - Gruca, M.
A1 - Grzonka, J.
A1 - Gunn, J. P.
A1 - Hassouni, K.
A1 - Heinola, K.
A1 - Höschen, T.
A1 - Huber, S.
A1 - Jacob, W.
A1 - Jepu, I.
A1 - Jiang, X.
A1 - Jogi, I.
A1 - Kaiser, A.
A1 - Karhunen, J.
A1 - Kelemen, M.
A1 - Köppen, M.
A1 - Koslowski, H. R.
A1 - Kreter, A.
A1 - Kubkowska, M.
A1 - Laan, M.
A1 - Laguardia, L.
A1 - Lahtinen, A.
A1 - Lasa, A.
A1 - Lazic, V.
A1 - Lemahieu, N.
A1 - Likonen, J.
A1 - Linke, J.
A1 - Litnovsky, A.
A1 - Linsmeier, C.
A1 - Loewenhoff, T.
A1 - Lungu, C.
A1 - Lungu, M.
A1 - Maddaluno, G.
A1 - Maier, H.
A1 - Makkonen, T.
A1 - Manhard, A.
A1 - Marandet, Y.
A1 - Markelj, S.
A1 - Marot, L.
A1 - Martin, C.
A1 - Martin-Rojo, A. B.
A1 - Martynova, Y.
A1 - Mateus, R.
A1 - Matveev, D.
A1 - Mayer, M.
A1 - Meisl, G.
A1 - Mellet, N.
A1 - Michau, A.
A1 - Miettunen, J.
A1 - Möller, S.
A1 - Mougenot, J.
A1 - Mozetic, M.
A1 - Nemanič, V.
A1 - Neu, R.
A1 - Nordlund, K.
A1 - Oberkofler, M.
A1 - Oyarzabal, E.
A1 - Panjan, M.
A1 - Pardanaud, C.
A1 - Paris, P.
A1 - Passoni, M.
A1 - Pegourie, B.
A1 - Pelicon, P.
A1 - Petersson, P.
A1 - Piip, K.
A1 - Pintsuk, G.
A1 - Pompilian, G. O.
A1 - Popa, G.
A1 - Porosnicu, C.
A1 - Primc, G.
A1 - Probst, M.
A1 - Räisänen, J.
A1 - Rasinski, M.
A1 - Ratynskaia, S.
A1 - Reiser, D.
A1 - Ricci, D.
A1 - Richou, M.
A1 - Riesch, J.
A1 - Riva, G.
A1 - Rosinski, M.
A1 - Roubin, P.
A1 - Rubel, M.
A1 - Ruset, C.
A1 - Safi, E.
A1 - Sergienko, G.
A1 - Siketic, Z.
A1 - Sima, A.
A1 - Spilker, B.
A1 - Stadlmayr, R.
A1 - Steudel, I.
A1 - Ström, P.
A1 - Tadic, T.
A1 - Tafalla, D.
A1 - Tale, I.
A1 - Terentyev, D.
A1 - Terra, A.
A1 - Tiron, V.
A1 - Tiseanu, I.
A1 - Tolias, P.
A1 - Tskhakaya, D.
A1 - Uccello, A.
A1 - Unterberg, B.
A1 - Uytdenhoven, I.
A1 - Vassallo, E.
A1 - Vavpetic, P.
A1 - Veis, P.
A1 - Velicu, I. L.
A1 - Voitkans, A.
A1 - von Toussaint, U.
A1 - Weckmann, A.
A1 - Wirtz, M.
A1 - Zaloznik, A.
A1 - Zaplotnik, R.
A1 - WP PFC contributors
AB - The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma–material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.
VL - 57
IS - 11
U1 - PSI
U2 - PMI
U5 - 4f90e0cf51291a6cb8b6e575c66f5043
ER -
TY - JOUR
T1 - The effect of ion flux on plasma-induced modification and deuterium retention in tungsten and tungsten–tantalum alloys
JF - Journal of Nuclear Materials
Y1 - 2015
A1 - Zayachuk, Y.
A1 - Manhard, A.
A1 - 't Hoen, M. H. J.
A1 - Jacob, W.
A1 - Zeijlmans van Emmichoven, P. A.
A1 - Van Oost, G.
AB - The paper presents the results of an experimental study of deuterium retention in W and W–Ta alloy that were exposed to first-wall relevant low flux (∼1020 m−2 s−1) deuterium plasma in the ECR plasma generator PlaQ. Subsequent analysis included surface imaging by optical microscopy, deuterium depth profiling by nuclear reaction analysis (NRA) and measurements of deuterium content by thermal desorption spectroscopy (TDS). It was found that under investigated exposure conditions the deuterium content was higher in W–Ta alloy than in W. Combined with the previously reported results showing that under high-flux (∼1024 m−2 s−1) retention is higher in W instead, this gives rise to a peculiar flux effect – dependence of relative retention between different materials on exposure flux. We interpret this effect as evidence that at different flux ranges different populations of trapping sites determine the retention, namely pre-existing microstructural traps at low-flux exposure and plasma-induced ones at high-flux exposure.
VL - 464
U1 - PSI
U2 - PSI-E
U5 - d9e7cdaca8a94724e6459dbb1d21866f
ER -
TY - JOUR
T1 - Depth profiling of the modification induced by high-flux deuterium plasma in tungsten and tungsten–tantalum alloys
JF - Nuclear Fusion
Y1 - 2014
A1 - Zayachuk, Y.
A1 - Manhard, A.
A1 - 't Hoen, M. H. J.
A1 - Jacob, W.
A1 - Zeijlmans van Emmichoven, P. A.
A1 - Van Oost, G.
AB - The present work reports the results of an experimental study of the depth distribution and fluence dependence of deuterium plasma-induced material modification of tungsten and tungsten–tantalum alloys. Plasma-induced damage was created by exposure to high-flux deuterium plasma in the plasma generator Pilot-PSI, followed by the degassing and subsequent decoration of created defects with deuterium by another plasma exposure. The depth distribution of deuterium from the decorating exposure reflects the distribution of plasma-induced defects. Depth profiling of this decorating deuterium, was performed by nuclear reaction analysis. It was found that plasma-induced material modification, which manifested itself as an increase of the deuterium concentration in the samples pre-exposed with high-flux plasma in comparison to the samples without such pre-exposure extends down to more than5 µ m from the surface. This increase features a tendency to saturation with increasing fluence of the damaging high-flux plasma. Over the entire probing range, with the exception of the narrow surface region and the deep region beyond5 µ m, the deuterium content is lower in pre-exposed W–Ta than in similarly pre-exposed W. Sub-surface features formed as a result of high-flux plasma exposure were studied with the help of focused ion beam cross-sectioning. W was found to contain plasma-induced cavities down to much larger depth than W–Ta.
VL - 54
IS - 12
U1 - PSI
U2 - PSI-E
U5 - c8f40c8f9d38a1ebc658d4081abd5d65
ER -