TY - JOUR
T1 - Nearing final design of the ITER EC H&CD Upper Launcher
JF - Fusion Engineering and Design
Y1 - 2019
A1 - Strauss, D.
A1 - Aiello, G.
A1 - Bertizzolo, R.
A1 - Bruschi, A.
A1 - Casal, N.
A1 - Chavan, R.
A1 - Farina, D.
A1 - Figini, L.
A1 - Gagliardi, M.
A1 - Ronden, D.
A1 - Goodman, T. P.
A1 - Grossetti, G.
A1 - Heemskerk, C.
A1 - Henderson, M. A.
A1 - Kasparek, W.
A1 - Koning, J.
A1 - Landis, J. D.
A1 - Leichtle, D.
A1 - Meier, A.
A1 - Moro, A.
A1 - Nowak, S.
A1 - Pacheco, J.
A1 - Platania, P.
A1 - Plaum, B.
A1 - Poli, E.
A1 - Ramseyer, F.
A1 - Saibene, G.
A1 - Más-Sanchez, A.
A1 - Santos Silva, P.
A1 - Sauter, O.
A1 - Scherer, T.
A1 - Schreck, S.
A1 - Sozzi, C.
A1 - Spaeh, P.
A1 - Vagnoni, M.
A1 - Vaccaro, A.
A1 - Weinhorst, B.
KW - ECRH
KW - Electron cyclotron heating
KW - gyrotron
KW - ITER
KW - plasma heating
KW - Upper launcher
AB - The ITER ECRH system consists of 24 gyrotrons with up to 24 MW installed millimeter wave heating power at 170 GHz, power supplies, control system, transmission lines, one Equatorial and the four Upper Launchers. With its high frequency and small beam focus the ECRH has the unique capability of driving locally current. While the Equatorial Launcher mainly acts for central heating and current profile shaping, the Upper Launchers aim on suppressing MHD instabilities, especially neoclassical tearing modes (NTM) triggering plasma disruptions. The Upper Launchers inject millimeter waves through a quasi-optical section consisting of three fixed and the front steering mirror set. The eight overlapping beams have focal points optimized for suppression of the q = 3/2 and q = 2/1 NTMs. Several project change requests required the redesign of the Upper Launchers and the connected ex-vessel system. This redesign includes a new boundary geometry of the launchers as well as a newly designed cooling system for the Blanket Shield Module (BSM), a modified flange of the BSM to the structural main frame and a refined optical design. Additionally shield blocks with integrated in-vessel waveguides were added and the closure plate with waveguide and supply line feedthroughs was adapted. Further changes, not all caused by PCRs, include newly designed ex-vessel waveguide components with a reduced aperture and redesigned ultra low-loss CVD diamond windows. Finally several components originally foreseen as off-the-shelf components have become part of the design scope. The new launcher design status is presented with selected results on numerical design validation.
VL - 146
U1 - FP
U2 - TP
U5 - 6bbaba7db0c6ca208393a7d86cee241a
ER -
TY - JOUR
T1 - Status of the Final Design of the EC UPP Launcher
JF - Fusion Engineering and Design
Y1 - 2018
A1 - Spaeh, P.
A1 - Aiello, G.
A1 - Chavan, R.
A1 - Gagliardi, M.
A1 - Grossetti, G.
A1 - Heemskerk, C. J. M.
A1 - Landis, J. D.
A1 - Meier, A.
A1 - Pacheco, J.
A1 - Ronden, D.
A1 - Scherer, T.
A1 - Schreck, S.
A1 - Strauss, D.
A1 - Vaccaro, A.
A1 - Weinhorst, B.
AB - Four EC H&CD (Electron Cyclotron Heating and Current Drive) launchers will be installed into the upper ports #12, #13, #15 and #16 in ITER. Beside plasma heating their main purpose is to counteract plasma instabilities by injecting up to 20 MW of microwave power at a frequency of 170 GHz at dedicated positions into the plasma. The microwave power is generated in 24 Gyrotrons outside the Tokamak and transmitted into the dedicated ports by 8 waveguide lines per launcher. After passing a CVD (Chemical Vapor Deposition) diamond window and another section of circular waveguides, the microwaves are quasi-optically guided into the plasma by an adjusted set of mirrors. These mirrors and also the foremost segments of the waveguides are mounted into the Upper Port Plug, which is a massive steel structure capable to dissipate up to 800 kW heat and to withstand heavy mechanical loads induced mainly from plasma disruptions. This paper presents the most recent status of the design of the EC H&CD Upper Port Plug (UPP), featuring the construction of the supporting structure and the BSM (Blanket Shield Module) with its plasma facing First Wall, the PHTS (Primary Heat Transfer System) water cooling layout, the shielding components engineering, the microwave system integration and comprehensive manufacturing strategies. Also correlated computational analyses to prove the final design of the launcheŕs structural system are given.
PB - 13th International Symposium on Fusion Nuclear Technology ISFNT-13
VL - 136
IS - Part B
U1 - FP
U2 - TP
U5 - e9ed3e02e39d7ff8df1d0ac739db0742
ER -
TY - JOUR
T1 - Status of the ITER Electron Cyclotron Heating and Current Drive System
JF - Journal of Infrared, Millimeter, and Terahertz Waves
Y1 - 2016
A1 - Darbos, C.
A1 - Albajar, F.
A1 - Bonicelli, T.
A1 - Carannante, G.
A1 - Cavinato, M.
A1 - Cismondi, F.
A1 - Denisov, G.
A1 - Farina, D.
A1 - Gagliardi, M.
A1 - Ronden, D. M. S.
A1 - Gandini, F.
A1 - Gassmann, T.
A1 - Goodman, T.
A1 - Hanson, G.
A1 - Henderson, M. A.
A1 - Kajiwara, K.
A1 - McElhaney, K.
A1 - Nousiainen, R.
A1 - Oda, Y.
A1 - Omori, T.
A1 - Oustinov, A.
A1 - Parmar, D.
A1 - Popov, V. L.
A1 - Purohit, D.
A1 - Rao, S.
A1 - Rasmussen, D.
A1 - Rathod, V.
A1 - Saibene, G.
A1 - Sakamoto, K.
A1 - Sartori, F.
A1 - Scherer, T.
A1 - Singh, N. P.
A1 - Strauss, D.
A1 - Takahashi, K.
KW - ITER electron cyclotron heating current drive
PB - Springer US
VL - 37
IS - 1
U1 - FP
U2 - TP
U5 - 9c4ce3c4b7ebc715c0486edc3827b318
ER -
TY - JOUR
T1 - Progress in the ITER electron cyclotron heating and current drive system design
JF - Fusion Engineering and Design
Y1 - 2015
A1 - Omori, T.
A1 - Albajar, F.
A1 - Bonicelli, T.
A1 - Carannante, G.
A1 - Cavinato, M.
A1 - Cismondi, F.
A1 - Darbos, C.
A1 - Denisov, G.
A1 - Farina, D.
A1 - Ronden, D. M. S.
A1 - Gagliardi, M.
A1 - Gandini, F.
A1 - Gassmann, T.
A1 - Goodman, T.
A1 - Hanson, G.
A1 - Henderson, M. A.
A1 - Kajiwara, K.
A1 - McElhaney, K.
A1 - Nousiainen, R.
A1 - Oda, Y.
A1 - Oustinov, A.
A1 - Parmar, D.
A1 - Popov, V. L.
A1 - Purohit, D.
A1 - Laxmikanth Rao, S.
A1 - Rasmussen, D.
A1 - Rathod, V.
A1 - Saibene, G.
A1 - Sakamoto, K.
A1 - Sartori, F.
A1 - Scherer, T.
A1 - Pal Singh, N.
A1 - Strauss, D.
A1 - Takahashi, K.
VL - 96–97
N1 - Proceedings of the 28th Symposium On Fusion Technology (SOFT-28)
U1 - FP
U2 - TP
U5 - 5ce938435de72a8941db62a82b675213
ER -
TY - JOUR
T1 - Status of Europe’s contribution to the ITER EC system
JF - EPJ Web of Conferences
Y1 - 2015
A1 - Albajar, F.
A1 - Aiello, G.
A1 - Alberti, S.
A1 - Arnold, F.
A1 - Avramidis, K.
A1 - Bader, M.
A1 - Batista, R.
A1 - Bertizzolo, R.
A1 - Bonicelli, T.
A1 - Braunmueller, F.
A1 - Brescan, C.
A1 - Bruschi, A.
A1 - von Burg, B.
A1 - Camino, K.
A1 - Carannante, G.
A1 - Casarin, V.
A1 - Castillo, A.
A1 - Cauvard, F.
A1 - Cavalieri, C.
A1 - Cavinato, M.
A1 - Chavan, R.
A1 - Chelis, J.
A1 - Cismondi, F.
A1 - Combescure, D.
A1 - Darbos, C.
A1 - Farina, D.
A1 - Fasel, D.
A1 - Figini, L.
A1 - Gagliardi, M.
A1 - Gandini, F.
A1 - Gantenbein, G.
A1 - Gassmann, T.
A1 - Gessner, R.
A1 - Goodman, T. P.
A1 - V. Gracia
A1 - Grossetti, G.
A1 - Heemskerk, C.
A1 - Henderson, M.
A1 - Hermann, V.
A1 - Hogge, J. P.
A1 - Illy, S.
A1 - Ioannidis, Z.
A1 - Jelonnek, J.
A1 - Jin, J.
A1 - Kasparek, W.
A1 - Koning, J.
A1 - Krause, A. S.
A1 - Landis, J. D.
A1 - Latsas, G.
A1 - Li, F.
A1 - Mazzocchi, F.
A1 - Meier, A.
A1 - Moro, A.
A1 - Nousiainen, R.
A1 - Purohit, D.
A1 - Nowak, S.
A1 - Omori, T.
A1 - van Oosterhout, J.
A1 - Pacheco, J.
A1 - Pagonakis, I.
A1 - Platania, P.
A1 - Poli, E.
A1 - Preis, A. K.
A1 - Ronden, D.
A1 - Rozier, Y.
A1 - Rzesnicki, T.
A1 - Saibene, G.
A1 - Sanchez, F.
A1 - Sartori, F.
A1 - Sauter, O.
A1 - Scherer, T.
A1 - Schlatter, C.
A1 - Schreck, S.
A1 - Serikov, A.
A1 - Siravo, U.
A1 - Sozzi, C.
A1 - Spaeh, P.
A1 - Spichiger, A.
A1 - Strauss, D.
A1 - Takahashi, K.
A1 - Thumm, M.
A1 - Tigelis, I.
A1 - Vaccaro, A.
A1 - Vomvoridis, J.
A1 - Tran, M. Q.
A1 - Weinhorst, B.
VL - 87
U1 - FP
U2 - TP
U5 - d2a73ecb85ae59ed760d90d206a922bd
ER -
TY - JOUR
T1 - Progress of the ECRH Upper Launcher design for ITER
JF - Fusion Engineering and Design
Y1 - 2014
A1 - Strauss, D.
A1 - Aiello, G.
A1 - Bruschi, A.
A1 - Chavan, R.
A1 - Farina, D.
A1 - Figini, L.
A1 - Gagliardi, M.
A1 - V. Gracia
A1 - Goodman, T. P.
A1 - Grossetti, G.
A1 - Heemskerk, C.
A1 - Henderson, M. A.
A1 - Kasparek, W.
A1 - Krause, A.
A1 - Landis, J. D.
A1 - Meier, A.
A1 - Moro, A.
A1 - Platania, P.
A1 - Plaum, B.
A1 - Poli, E.
A1 - Ronden, D.
A1 - Saibene, G.
A1 - Sanchez, F.
A1 - Sauter, O.
A1 - Scherer, T.
A1 - Schreck, S.
A1 - Serikov, A.
A1 - Sozzi, C.
A1 - Spaeh, P.
A1 - Vaccaro, A.
A1 - Weinhorst, B.
KW - Blanket
KW - Diamond windows
KW - ECRH
KW - Front steering
KW - ITER
KW - launcher
AB - The design of the ITER ECRH system provides 20 MW millimeter wave power for central plasma heating and MHD stabilization. The system consists of an array of 24 gyrotrons with power supplies coupled to a set of transmission lines guiding the beams to the four upper and the equatorial launcher. The front steering upper launcher design described herein has passed successfully the preliminary design review, and it is presently in the final design stage. The launcher consists of a millimeter wave system and steering mechanism with neutron shielding integrated into an upper port plug with the plasma facing blanket shield module (in-vessel) and a set of ex-vessel waveguides connecting the launcher to the transmission lines. Part of the transmission lines are the ultra-low loss CVD torus diamond windows and a shutter valve, a miter bend section and the feedthroughs integrated in the plug closure plate. These components are connected by corrugated waveguides and form together the first confinement system (FCS). In-vessel, the millimeter-wave system includes a quasi-optical beam propagation system including four mirror sets and a front steering mirror. The millimeter wave system is integrated into a specifically optimized upper port plug providing structural stability to withstand plasma disruption forces and the high heat load from the plasma side with a dedicated blanket shield module. A recent update in the ITER interface definition has resulted in the recession of the upper port plug first wall panels, which is now integrated into the design. Apart from the millimeter wave system the upper port plug houses also a set of shield blocks which provide neutron shielding. An overview of the actual ITER ECRH Upper Launcher is given together with some highlights of the design.
VL - 89
IS - 7-8
U1 - FP
U2 - TP
U5 - 65ec0341278cd5ae646408568fef03be
ER -