TY - JOUR
T1 - The JOREK non-linear extended MHD code and applications to large-scale instabilities and their control in magnetically confined fusion plasmas
JF - Nuclear Fusion
Y1 - 2021
A1 - M. Hoelzl
A1 - G.T. A. Huijsmans
A1 - S.J. P. Pamela
A1 - M. Bécoulet
A1 - E. Nardon
A1 - F.J. Artola
A1 - B. Nkonga
A1 - C.V. Atanasiu
A1 - I. Krebs
A1 - E. Westerhof
A1 - V. Bandaru
A1 - A. Bhole
A1 - D. Bonfiglio
A1 - A. Cathey
A1 - O. Czarny
A1 - A. Dvornova
A1 - T. Fehér
A1 - A. Fil
A1 - E. Franck
A1 - S. Futatani
A1 - M. Gruca
A1 - H. Guillard
A1 - J.W. Haverkort
A1 - I. Holod
A1 - D. Hu
A1 - S.K. Kim
A1 - S.Q. Korving
A1 - L. Kos
A1 - L. Kripner
A1 - G. Latu
A1 - F. Liu
A1 - P. Merkel
A1 - D. Meshcheriakov
A1 - V. Mitterauer
A1 - S. Mochalskyy
A1 - J.A. Morales
A1 - R. Nies
A1 - N. Nikulsin
A1 - F. Orain
A1 - D. Penko
A1 - J. Pratt
A1 - R. Ramasamy
A1 - P. Ramet
A1 - C. Reux
A1 - N. Schwarz
A1 - Singh Verma
A1 - S.F. Smith
A1 - C. Sommariva
A1 - E. Strumberger
A1 - D.C. vanVugt
A1 - M. Verbeek
A1 - F. Wieschollek
A1 - J. Zielinski
AB - JOREK is a massively parallel fully implicit non-linear extended MHD code for realistic tokamak X-point plasmas. It has become a widely used extremely versatile simulation code for studying large-scale plasma instabilities and their control and is continuously developed in an international community with strong involvements in the European fusion research program and ITER organization. This article gives a comprehensive overview of the physics models implemented, numerical methods applied for solving the equations and physics studies performed with the code. A dedicated section highlights some of the verification work done for the code. A hierarchy of different physics models is available including a free boundary and resistive wall extension and hybrid kinetic-fluid models. The code allows for flux-surface aligned iso-parametric finite element grids in single and double X-point plasmas which can be extended to the true physical walls and uses a robust fully implicit time stepping. Particular focus is laid on plasma edge and scrape-off layer (SOL) physics as well as disruption related phenomena. Among the key results obtained with JOREK regarding plasma edge and SOL, are deep insights into the dynamics of edge localized modes (ELMs), ELM cycles, and ELM control by resonant magnetic perturbations, pellet injection, as well as by vertical magnetic kicks. Also ELM free regimes, detachment physics, the generation and transport of impurities during an ELM, and electrostatic turbulence in the pedestal region are investigated. Regarding disruptions, the focus is on the dynamics of the thermal quench and current quench triggered by massive gas injection (MGI) and shattered pellet injection (SPI), runaway electron (RE) dynamics as well as the RE interaction with MHD modes, and vertical displacement events (VDEs). Also the seeding and suppression of tearing modes (TMs), the dynamics of naturally occurring thermal quenches triggered by locked modes, and radiative collapses are being studied.
VL - 61
UR - https://arxiv.org/abs/2011.09120
IS - 6
U1 - FP
U2 - IMM
U5 - 53181a001585cbc7428810418852845f
ER -
TY - JOUR
T1 - Overview of physics studies on ASDEX Upgrade
JF - Nuclear Fusion
Y1 - 2019
A1 - Meyer, H.
A1 - Angioni, C.
A1 - C.G. Albert
A1 - N. Arden
A1 - R. Arredondo Parra
A1 - Asunta, O.
A1 - de Baar, M.
A1 - Balden, M.
A1 - V. Bandaru
A1 - Behler, K.
A1 - Bergmann, A.
A1 - Bernardo, J.
A1 - Bernert, M.
A1 - A. Biancalani
A1 - Bilato, R.
A1 - Birkenmeier, G.
A1 - Blanken, T. C.
A1 - Bobkov, V.
A1 - Bock, A.
A1 - Bolzonella, T.
A1 - A. Bortolon
A1 - B. Böswirth
A1 - Bottereau, C.
A1 - Bottino, A.
A1 - van den Brand, H.
A1 - Brezinsek, S.
A1 - Brida, D.
A1 - Brochard, F.
A1 - C. Bruhn
A1 - Buchanan, J.
A1 - Buhler, A.
A1 - Burckhart, A.
A1 - Camenen, Y.
A1 - D. Carlton
A1 - Carr, M.
A1 - Carralero, D.
A1 - C. Castaldo
A1 - Cavedon, M.
A1 - C. Cazzaniga
A1 - S. Ceccuzzi
A1 - Challis, C.
A1 - Chankin, A.
A1 - Chapman, S.
A1 - C. Cianfarani
A1 - Clairet, F.
A1 - Coda, S.
A1 - Coelho, R.
A1 - Coenen, J. W.
A1 - Colas, L.
A1 - Conway, G. D.
A1 - Costea, S.
A1 - Coster, D. P.
A1 - Cote, T. B.
A1 - Creely, A.
A1 - G. Croci
A1 - Cseh, G.
A1 - Czarnecka, A.
A1 - I. Cziegler
A1 - den Harder, N.
A1 - Jaulmes, F.
A1 - Kantor, M.
A1 - Karhunen, J.
A1 - Miettunen, J.
A1 - Vanovac, B.
A1 - EUROfusion MST1 Team
A1 - et al.
AB - The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m−1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of ‘natural’ no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle—measured for the first time—or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.
PB - IOP Publishing
VL - 59
IS - 11
U1 - FP
U2 - TP
U5 - 87a8b0ff65b4dc41f80072ac74a6868a
ER -