The successful use of a tokamak for generating fusion power requires an active control of magnetic instabilities, such as neoclassical tearing modes (NTMs). Commonly, the NTM location is determined using electron cyclotron emission (ECE) and this is used to apply electron cyclotron heating (ECH) on the NTM location. In this paper, an inline ECE set-up at ASDEX Upgrade is presented in which ECE is measured and ECH is applied via the same path. First results are presented and a means to interpret the measurement data is given. Amplitude and phase with respect to a reference magnetic signal are calculated. Based on the amplitude and phase, the time of mode crossing is determined and shown to compare well with real-time estimates of the mode crossing time. The ECH launcher and [formula]; flux surface geometries at ASDEX Upgrade, which are optimized for current drive by a beam path that is tangential to the flux surface near deposition, make it difficult to identify the mode crossing without inline ECE launcher movement. Therefore, NTM control based on inline ECE requires launcher movement to determine and maintain a reliable estimate of the NTM location.

VL - 59 IS - 1 U1 -FP

U2 -IMM

U5 - 2bc2830faba9c0bb417e0bdddbc5e96e ER - TY - JOUR T1 - Nearing final design of the ITER EC H&CD Upper Launcher JF - Fusion Engineering and Design Y1 - 2019 A1 - Strauss, D. A1 - Aiello, G. A1 - Bertizzolo, R. A1 - Bruschi, A. A1 - Casal, N. A1 - Chavan, R. A1 - Farina, D. A1 - Figini, L. A1 - Gagliardi, M. A1 - Ronden, D. A1 - Goodman, T. P. A1 - Grossetti, G. A1 - Heemskerk, C. A1 - Henderson, M. A. A1 - Kasparek, W. A1 - Koning, J. A1 - Landis, J. D. A1 - Leichtle, D. A1 - Meier, A. A1 - Moro, A. A1 - Nowak, S. A1 - Pacheco, J. A1 - Platania, P. A1 - Plaum, B. A1 - Poli, E. A1 - Ramseyer, F. A1 - Saibene, G. A1 - Más-Sanchez, A. A1 - Santos Silva, P. A1 - Sauter, O. A1 - Scherer, T. A1 - Schreck, S. A1 - Sozzi, C. A1 - Spaeh, P. A1 - Vagnoni, M. A1 - Vaccaro, A. A1 - Weinhorst, B. KW - ECRH KW - Electron cyclotron heating KW - gyrotron KW - ITER KW - plasma heating KW - Upper launcher AB - The ITER ECRH system consists of 24 gyrotrons with up to 24 MW installed millimeter wave heating power at 170 GHz, power supplies, control system, transmission lines, one Equatorial and the four Upper Launchers. With its high frequency and small beam focus the ECRH has the unique capability of driving locally current. While the Equatorial Launcher mainly acts for central heating and current profile shaping, the Upper Launchers aim on suppressing MHD instabilities, especially neoclassical tearing modes (NTM) triggering plasma disruptions. The Upper Launchers inject millimeter waves through a quasi-optical section consisting of three fixed and the front steering mirror set. The eight overlapping beams have focal points optimized for suppression of the q = 3/2 and q = 2/1 NTMs. Several project change requests required the redesign of the Upper Launchers and the connected ex-vessel system. This redesign includes a new boundary geometry of the launchers as well as a newly designed cooling system for the Blanket Shield Module (BSM), a modified flange of the BSM to the structural main frame and a refined optical design. Additionally shield blocks with integrated in-vessel waveguides were added and the closure plate with waveguide and supply line feedthroughs was adapted. Further changes, not all caused by PCRs, include newly designed ex-vessel waveguide components with a reduced aperture and redesigned ultra low-loss CVD diamond windows. Finally several components originally foreseen as off-the-shelf components have become part of the design scope. The new launcher design status is presented with selected results on numerical design validation. VL - 146 U1 - FP U2 - TP U5 - 6bbaba7db0c6ca208393a7d86cee241a ER - TY - JOUR T1 - Development of Resonant Diplexers for high-power ECRH – Status, Applications, Plans JF - EPJ Web of Conferences Y1 - 2015 A1 - Kasparek, W. A1 - Plaum, B. A1 - Lechte, C. A1 - Wu, Z. A1 - Wang, H. A1 - Maraschek, M. A1 - Stober, J. A1 - van den Brand, H. A1 - Bongers, W. A1 - Wagner, D. A1 - Reich, M. A1 - Schubert, M. A1 - Grünwald, G. A1 - Monaco, F. A1 - Müller, S. A1 - Schütz, H. A1 - Erckmann, V. A1 - Doelman, N. A1 - Van den Braber, R. A1 - Klop, W. A1 - Krijger, B. A1 - Petelin, M. A1 - Koposova, E. A1 - Lubyako, L. A1 - Bruschi, A. A1 - Sakamoto, K. A1 - teams at the contributing institutes A1 - ASDEX Upgrade Team VL - 87 U1 - MaSF U2 - MaSF-E U5 - af697d7f1266e4cb40e18cc68c2ff676 ER - TY - JOUR T1 - A Multifrequency Notch Filter for Millimeter Wave Plasma Diagnostics based on Photonic Bandgaps in Corrugated Circular Waveguides JF - EPJ Web of Conferences Y1 - 2015 A1 - Wagner, D. A1 - Bongers, W. A1 - Kasparek, W. A1 - Leuterer, F. A1 - Monaco, F. A1 - M. Münich A1 - Schütz, H. A1 - Stober, J. A1 - Thumm, M. A1 - van de Brand, H. VL - 87 U1 - MaSF U2 - MaSF-E U5 - 26a8cda6694a646ba2b4d3ffdf790250 ER - TY - JOUR T1 - Status of Europe’s contribution to the ITER EC system JF - EPJ Web of Conferences Y1 - 2015 A1 - Albajar, F. A1 - Aiello, G. A1 - Alberti, S. A1 - Arnold, F. A1 - Avramidis, K. A1 - Bader, M. A1 - Batista, R. A1 - Bertizzolo, R. A1 - Bonicelli, T. A1 - Braunmueller, F. A1 - Brescan, C. A1 - Bruschi, A. A1 - von Burg, B. A1 - Camino, K. A1 - Carannante, G. A1 - Casarin, V. A1 - Castillo, A. A1 - Cauvard, F. A1 - Cavalieri, C. A1 - Cavinato, M. A1 - Chavan, R. A1 - Chelis, J. A1 - Cismondi, F. A1 - Combescure, D. A1 - Darbos, C. A1 - Farina, D. A1 - Fasel, D. A1 - Figini, L. A1 - Gagliardi, M. A1 - Gandini, F. A1 - Gantenbein, G. A1 - Gassmann, T. A1 - Gessner, R. A1 - Goodman, T. P. A1 - V. Gracia A1 - Grossetti, G. A1 - Heemskerk, C. A1 - Henderson, M. A1 - Hermann, V. A1 - Hogge, J. P. A1 - Illy, S. A1 - Ioannidis, Z. A1 - Jelonnek, J. A1 - Jin, J. A1 - Kasparek, W. A1 - Koning, J. A1 - Krause, A. S. A1 - Landis, J. D. A1 - Latsas, G. A1 - Li, F. A1 - Mazzocchi, F. A1 - Meier, A. A1 - Moro, A. A1 - Nousiainen, R. A1 - Purohit, D. A1 - Nowak, S. A1 - Omori, T. A1 - van Oosterhout, J. A1 - Pacheco, J. A1 - Pagonakis, I. A1 - Platania, P. A1 - Poli, E. A1 - Preis, A. K. A1 - Ronden, D. A1 - Rozier, Y. A1 - Rzesnicki, T. A1 - Saibene, G. A1 - Sanchez, F. A1 - Sartori, F. A1 - Sauter, O. A1 - Scherer, T. A1 - Schlatter, C. A1 - Schreck, S. A1 - Serikov, A. A1 - Siravo, U. A1 - Sozzi, C. A1 - Spaeh, P. A1 - Spichiger, A. A1 - Strauss, D. A1 - Takahashi, K. A1 - Thumm, M. A1 - Tigelis, I. A1 - Vaccaro, A. A1 - Vomvoridis, J. A1 - Tran, M. Q. A1 - Weinhorst, B. VL - 87 U1 - FP U2 - TP U5 - d2a73ecb85ae59ed760d90d206a922bd ER - TY - JOUR T1 - Progress of the ECRH Upper Launcher design for ITER JF - Fusion Engineering and Design Y1 - 2014 A1 - Strauss, D. A1 - Aiello, G. A1 - Bruschi, A. A1 - Chavan, R. A1 - Farina, D. A1 - Figini, L. A1 - Gagliardi, M. A1 - V. Gracia A1 - Goodman, T. P. A1 - Grossetti, G. A1 - Heemskerk, C. A1 - Henderson, M. A. A1 - Kasparek, W. A1 - Krause, A. A1 - Landis, J. D. A1 - Meier, A. A1 - Moro, A. A1 - Platania, P. A1 - Plaum, B. A1 - Poli, E. A1 - Ronden, D. A1 - Saibene, G. A1 - Sanchez, F. A1 - Sauter, O. A1 - Scherer, T. A1 - Schreck, S. A1 - Serikov, A. A1 - Sozzi, C. A1 - Spaeh, P. A1 - Vaccaro, A. A1 - Weinhorst, B. KW - Blanket KW - Diamond windows KW - ECRH KW - Front steering KW - ITER KW - launcher AB - The design of the ITER ECRH system provides 20 MW millimeter wave power for central plasma heating and MHD stabilization. The system consists of an array of 24 gyrotrons with power supplies coupled to a set of transmission lines guiding the beams to the four upper and the equatorial launcher. The front steering upper launcher design described herein has passed successfully the preliminary design review, and it is presently in the final design stage. The launcher consists of a millimeter wave system and steering mechanism with neutron shielding integrated into an upper port plug with the plasma facing blanket shield module (in-vessel) and a set of ex-vessel waveguides connecting the launcher to the transmission lines. Part of the transmission lines are the ultra-low loss CVD torus diamond windows and a shutter valve, a miter bend section and the feedthroughs integrated in the plug closure plate. These components are connected by corrugated waveguides and form together the first confinement system (FCS). In-vessel, the millimeter-wave system includes a quasi-optical beam propagation system including four mirror sets and a front steering mirror. The millimeter wave system is integrated into a specifically optimized upper port plug providing structural stability to withstand plasma disruption forces and the high heat load from the plasma side with a dedicated blanket shield module. A recent update in the ITER interface definition has resulted in the recession of the upper port plug first wall panels, which is now integrated into the design. Apart from the millimeter wave system the upper port plug houses also a set of shield blocks which provide neutron shielding. An overview of the actual ITER ECRH Upper Launcher is given together with some highlights of the design. VL - 89 IS - 7-8 U1 - FP U2 - TP U5 - 65ec0341278cd5ae646408568fef03be ER - TY - JOUR T1 - Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X JF - Nuclear Fusion Y1 - 2013 A1 - Bosch, H. S. A1 - R C Wolf A1 - Andreeva, T. A1 - Baldzuhn, J. A1 - Birus, D. A1 - Bluhm, T. A1 - Brauer, T. A1 - Braune, H. A1 - Bykov, V. A1 - Cardella, A. A1 - Durodie, F. A1 - Endler, M. A1 - Erckmann, V. A1 - Gantenbein, G. A1 - Hartmann, D. A1 - Hathiramani, D. A1 - Heimann, P. A1 - Heinemann, B. A1 - Hennig, C. A1 - Hirsch, M. A1 - Holtum, D. A1 - Jagielski, J. A1 - Jelonnek, J. A1 - Kasparek, W. A1 - Klinger, T. A1 - Konig, R. A1 - Kornejew, P. A1 - Kroiss, H. A1 - Krom, J. G. A1 - Kuhner, G. A1 - Laqua, H. A1 - Laqua, H. P. A1 - Lechte, C. A1 - Lewerentz, M. A1 - Maier, J. A1 - McNeely, P. A1 - Messiaen, A. A1 - Michel, G. A1 - Ongena, J. A1 - Peacock, A. A1 - Pedersen, T. S. A1 - Riedl, R. A1 - Riemann, H. A1 - Rong, P. A1 - Rust, N. A1 - Schacht, J. A1 - Schauer, F. A1 - Schroeder, R. A1 - Schweer, B. A1 - Spring, A. A1 - Stabler, A. A1 - Thumm, M. A1 - Turkin, Y. A1 - Wegener, L. A1 - Werner, A. A1 - Zhang, D. A1 - Zilker, M. A1 - Akijama, T. A1 - Alzbutas, R. A1 - Ascasibar, E. A1 - Balden, M. A1 - Banduch, M. A1 - Baylard, C. A1 - Behr, W. A1 - Beidler, C. A1 - Benndorf, A. A1 - Bergmann, T. A1 - Biedermann, C. A1 - Bieg, B. A1 - Biel, W. A1 - Borchardt, M. A1 - Borowitz, G. A1 - Borsuk, V. A1 - Bozhenkov, S. A1 - Brakel, R. A1 - Brand, H. A1 - Brown, T. A1 - Brucker, B. A1 - Burhenn, R. A1 - Buscher, K. P. A1 - Caldwell-Nichols, C. A1 - Cappa, A. A1 - Cardella, A. A1 - Carls, A. A1 - Carvalho, P. A1 - Ciupinski, L. A1 - Cole, M. A1 - Collienne, J. A1 - Czarnecka, A. A1 - Czymek, G. A1 - Dammertz, G. A1 - Dhard, C. P. A1 - Davydenko, V. I. A1 - Dinklage, A. A1 - Drevlak, M. A1 - Drotziger, S. A1 - Dudek, A. A1 - Dumortier, P. A1 - Dundulis, G. A1 - von Eeten, P. A1 - Egorov, K. A1 - Estrada, T. A1 - Faugel, H. A1 - Fellinger, J. A1 - Feng, Y. A1 - Fernandes, H. A1 - Fietz, W. H. A1 - Figacz, W. A1 - Fischer, F. A1 - Fontdecaba, J. A1 - Freund, A. A1 - Funaba, T. A1 - Funfgelder, H. A1 - Galkowski, A. A1 - Gates, D. A1 - Giannone, L. A1 - Regana, J. M. G. A1 - Geiger, J. A1 - Geissler, S. A1 - Greuner, H. A1 - Grahl, M. A1 - Gross, S. A1 - Grosman, A. A1 - Grote, H. A1 - Grulke, O. A1 - R. Jaspers A1 - Szabo, V. AB - The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition. VL - 53 SN - 0029-5515 UR - http://iopscience.iop.org/0029-5515/53/12/126001/ N1 - et al. is: Haas, M. Haiduk, L. Hartfuss, H. J. Harris, J. H. Haus, D. Hein, B. Heitzenroeder, P. Helander, P. Heller, R. Hidalgo, C. Hildebrandt, D. Hohnle, H. Holtz, A. Holzhauer, E. Holzthum, R. Huber, A. Hunger, H. Hurd, F. Ihrke, M. Illy, S. Ivanov, A. Jablonski, S. Jaksic, N. Jakubowski, M. Jensen, H. Jenzsch, H. Kacmarczyk, J. Kaliatk, T. Kallmeyer, J. Kamionka, U. Karaleviciu, R. Kern, S. Keunecke, M. Kleiber, R. Knauer, J. Koch, R. Kocsis, G. Konies, G. Koppen, M. Koslowski, R. Koshurinov, J. Kramer-Flecken, A. Krampitz, R. Kravtsov, Y. Krychowiak, M. Krzesinski, G. Ksiazek, I. Kubkowska, F. Kus, A. Langish, S. Laube, R. Laux, M. Lazerson, S. Lennartz, M. Li, C. Lietzow, R. Lohs, A. Lorenz, A. Louche, F. Lubyako, L. Lumsdaine, A. Lyssoivan, A. Maassberg, H. Marek, P. Martens, C. Marushchenko, N. Mayer, M. Mendelevitch, B. Mertens, P. Mikkelsen, D. Mishchenko, A. Missal, B. Mizuuchi, T. Modrow, H. Monnich, T. Morizaki, T. Murakami, S. Musielok, F. Nagel, M. Naujoks, D. Neilson, H. Neubauer, O. Neuner, U. Nocentini, R. Noterdaeme, J. M. Nuhrenberg, C. Obermayer, S. Offermanns, G. Oosterbeek, H. Otte, M. Panin, A. Pap, M. Paquay, S. Pasch, E. Peng, X. Petrov, S. Pilopp, D. Pirsch, H. Plaum, B. Pompon, F. Povilaitis, M. Preinhaelter, J. Prinz, O. Purps, F. Rajna, T. Recesi, S. Reiman, A. Reiter, D. Remmel, J. Renard, S. Rhode, V. Riemann, J. Rimkevicius, S. Risse, K. Rodatos, A. Rodin, I. Rome, M. Roscher, H. J. Rummel, K. Rummel, T. Runov, A. Ryc, L. Sachtleben, J. Samartsev, A. Sanchez, M. Sano, F. Scarabosio, A. Schmid, M. M. Schmitz, H. Schmitz, O. Schneider, M. Schneider, W. Scheibl, L. Scholz, M. Schroder, G. Schroder, M. Schruff, J. Schumacher, H. Shikhovtsev, I. V. Shoji, M. Siegl, G. Skodzik, J. Smirnow, M. Speth, E. Spong, D. A. Stadler, R. Sulek, Z. Szabolics, T. Szetefi, T. Szokefalvi-Nagy, Z. Tereshchenko, A. Thomsen, H. Thumm, M. Timmermann, D. Tittes, H. Toi, K. Tournianski, M. von Toussaint, U. Tretter, J. Tulipan, S. Turba, P. Uhlemann, R. Urban, J. Urbonavicius, E. Urlings, P. Valet, S. Van Eester, D. Van Schoor, M. Vervier, M. Viebke, H. Vilbrandt, R. Vrancken, M. Wauters, T. Weissgerber, M. Weiss, E. Weller, A. Wendorf, J. Wenzel, U. Windisch, T. Winkler, E. Winkler, M. Wolowski, J. Wolters, J. Wrochna, G. Xanthopoulos, P. Yamada, H. Yokoyama, M. Zacharias, D. Zajac, J. Zangl, G. Zarnstorff, M. Zeplien, H. Zoletnik, S. Zuin, M. U1 - FP U2 - TP U5 - 9ec4f6d15344384bf80d916052633c5f ER - TY - JOUR T1 - Overview of ASDEX Upgrade results JF - Nuclear Fusion Y1 - 2013 A1 - Stroth, U. A1 - Adamek, J. A1 - Aho-Mantila, L. A1 - Akaslompolo, S. A1 - Amdor, C. A1 - Angioni, C. A1 - Balden, M. A1 - Bardin, S. A1 - L. Barrera Orte A1 - Behler, K. A1 - Belonohy, E. A1 - Bergmann, A. A1 - Bernert, M. A1 - Bilato, R. A1 - Birkenmeier, G. A1 - Bobkov, V. A1 - Boom, J. A1 - Bottereau, C. A1 - Bottino, A. A1 - Braun, F. A1 - Brezinsek, S. A1 - Brochard, T. A1 - M. Brüdgam A1 - Buhler, A. A1 - Burckhart, A. A1 - Casson, F. J. A1 - Chankin, A. A1 - Chapman, I. A1 - Clairet, F. A1 - Classen, I.G.J. A1 - Coenen, J. W. A1 - Conway, G. D. A1 - Coster, D. P. A1 - Curran, D. A1 - da Silva, F. A1 - P. de Marné A1 - D'Inca, R. A1 - Douai, D. A1 - Drube, R. A1 - Dunne, M. A1 - Dux, R. A1 - Eich, T. A1 - Eixenberger, H. A1 - Endstrasser, N. A1 - Engelhardt, K. A1 - Esposito, B. A1 - Fable, E. A1 - Fischer, R. A1 - H. Fünfgelder A1 - Fuchs, J. C. A1 - K. Gál A1 - M. García Muñoz A1 - Geiger, B. A1 - Giannone, L. A1 - T. Görler A1 - da Graca, S. A1 - Greuner, H. A1 - Gruber, O. A1 - Gude, A. A1 - Guimarais, L. A1 - S. Günter A1 - Haas, G. A1 - Hakola, A. H. A1 - Hangan, D. A1 - Happel, T. A1 - T. Härtl A1 - Hauff, T. A1 - Heinemann, B. A1 - Herrmann, A. A1 - Hobirk, J. A1 - H. Höhnle A1 - M. Hölzl A1 - Hopf, C. A1 - Houben, A. A1 - Igochine, V. A1 - Ionita, C. A1 - Janzer, A. A1 - Jenko, F. A1 - Kantor, M. A1 - C.-P. Käsemann A1 - Kallenbach, A. A1 - S. Kálvin A1 - Kantor, M. A1 - Kappatou, A. A1 - Kardaun, O. A1 - Kasparek, W. A1 - Kaufmann, M. A1 - Kirk, A. A1 - H.-J. Klingshirn A1 - Kocan, M. A1 - Kocsis, G. A1 - Konz, C. A1 - Koslowski, R. A1 - Krieger, K. A1 - Kubic, M. A1 - Kurki-Suonio, T. A1 - Kurzan, B. A1 - Lackner, K. A1 - Lang, P. T. A1 - Lauber, P. A1 - Laux, M. A1 - Lazaros, A. A1 - Leipold, F. A1 - Leuterer, F. A1 - Lindig, S. A1 - Lisgo, S. A1 - Lohs, A. A1 - Lunt, T. A1 - Maier, H. A1 - Makkonen, T. A1 - Mank, K. A1 - M.-E. Manso A1 - Maraschek, M. A1 - Mayer, M. A1 - McCarthy, P. J. A1 - McDermott, R. A1 - Mehlmann, F. A1 - Meister, H. A1 - Menchero, L. A1 - Meo, F. A1 - Merkel, P. A1 - Merkel, R. A1 - Mertens, V. A1 - Merz, F. A1 - Mlynek, A. A1 - Monaco, F. A1 - Müller, S. A1 - H.W. Müller A1 - M. Münich A1 - Neu, G. A1 - Neu, R. A1 - Neuwirth, D. A1 - Nocente, M. A1 - Nold, B. A1 - Noterdaeme, J. M. A1 - Pautasso, G. A1 - Pereverzev, G. A1 - B. Plöckl A1 - Podoba, Y. A1 - Pompon, F. A1 - Poli, E. A1 - Polozhiy, K. A1 - Potzel, S. A1 - Puschel, M. J. A1 - Putterich, T. A1 - Rathgeber, S. K. A1 - Raupp, G. A1 - Reich, M. A1 - Reimold, F. A1 - Ribeiro, T. A1 - Riedl, R. A1 - Rohde, V. A1 - G. J. van Rooij A1 - Roth, J. A1 - Rott, M. A1 - Ryter, F. A1 - Salewski, M. A1 - Santos, J. A1 - Sauter, P. A1 - Scarabosio, A. A1 - Schall, G. A1 - Schmid, K. A1 - Schneider, P. A. A1 - Schneider, W. A1 - Schrittwieser, R. A1 - Schubert, M. A1 - Schweinzer, J. A1 - Scott, B. A1 - Sempf, M. A1 - Sertoli, M. A1 - Siccinio, M. A1 - Sieglin, B. A1 - Sigalov, A. A1 - Silva, A. A1 - Sommer, F. A1 - A. Stäbler A1 - Stober, J. A1 - Streibl, B. A1 - Strumberger, E. A1 - Sugiyama, K. A1 - Suttrop, W. A1 - Tala, T. A1 - Tardini, G. A1 - Teschke, M. A1 - Tichmann, C. A1 - Told, D. A1 - Treutterer, W. A1 - Tsalas, M. A1 - VanZeeland, M. A. A1 - Varela, P. A1 - Veres, G. A1 - Vicente, J. A1 - Vianello, N. A1 - Vierle, T. A1 - Viezzer, E. A1 - Viola, B. A1 - Vorpahl, C. A1 - Wachowski, M. A1 - Wagner, D. A1 - Wauters, T. A1 - Weller, A. A1 - Wenninger, R. A1 - Wieland, B. A1 - Willensdorfer, M. A1 - Wischmeier, M. A1 - Wolfrum, E. A1 - E. Würsching A1 - Yu, Q. A1 - Zammuto, I. A1 - Zasche, D. A1 - Zehetbauer, T. A1 - Zhang, Y. A1 - Zilker, M. A1 - Zohm, H. AB - The medium size divertor tokamak ASDEX Upgrade (major and minor radii 1.65 m and 0.5 m, respectively, magnetic-field strength 2.5 T) possesses flexible shaping and versatile heating and current drive systems. Recently the technical capabilities were extended by increasing the electron cyclotron resonance heating (ECRH) power, by installing 2 × 8 internal magnetic perturbation coils, and by improving the ion cyclotron range of frequency compatibility with the tungsten wall. With the perturbation coils, reliable suppression of large type-I edge localized modes (ELMs) could be demonstrated in a wide operational window, which opens up above a critical plasma pedestal density. The pellet fuelling efficiency was observed to increase which gives access to H-mode discharges with peaked density profiles at line densities clearly exceeding the empirical Greenwald limit. Owing to the increased ECRH power of 4 MW, H-mode discharges could be studied in regimes with dominant electron heating and low plasma rotation velocities, i.e. under conditions particularly relevant for ITER. The ion-pressure gradient and the neoclassical radial electric field emerge as key parameters for the transition. Using the total simultaneously available heating power of 23 MW, high performance discharges have been carried out where feed-back controlled radiative cooling in the core and the divertor allowed the divertor peak power loads to be maintained below 5 MW m −2 . Under attached divertor conditions, a multi-device scaling expression for the power-decay length was obtained which is independent of major radius and decreases with magnetic field resulting in a decay length of 1 mm for ITER. At higher densities and under partially detached conditions, however, a broadening of the decay length is observed. In discharges with density ramps up to the density limit, the divertor plasma shows a complex behaviour with a localized high-density region in the inner divertor before the outer divertor detaches. Turbulent transport is studied in the core and the scrape-off layer (SOL). Discharges over a wide parameter range exhibit a close link between core momentum and density transport. Consistent with gyro-kinetic calculations, the density gradient at half plasma radius determines the momentum transport through residual stress and thus the central toroidal rotation. In the SOL a close comparison of probe data with a gyro-fluid code showed excellent agreement and points to the dominance of drift waves. Intermittent structures from ELMs and from turbulence are shown to have high ion temperatures even at large distances outside the separatrix. VL - 53 UR - http://hdl.handle.net/11858/00-001M-0000-0026-E166-7 IS - 10 U1 - FP U2 - PDG U5 - 0b5b08fdc590c85cc01e6d1db1958848 ER - TY - JOUR T1 - Preliminary design of the ITER ECH Upper Launcher JF - Fusion Engineering and Design Y1 - 2013 A1 - Strauss, D. A1 - Aiello, G. A1 - Chavan, R. A1 - Cirant, S. A1 - de M. Baar A1 - Farina, D. A1 - Gantenbein, G. A1 - Goodman, T. P. A1 - Henderson, M. A. A1 - Kasparek, W. A1 - Kleefeldt, K. A1 - Landis, J. D. A1 - Meier, A. A1 - Moro, A. A1 - Platania, P. A1 - Plaum, B. A1 - Poli, E. A1 - Ramponi, G. A1 - Ronden, D. A1 - Saibene, G. A1 - Sanchez, F. A1 - Sauter, O. A1 - Scherer, T. A1 - Schreck, S. A1 - Serikov, A. A1 - Sozzi, C. A1 - Spaeh, P. A1 - Vaccaro, A. A1 - Zohm, H. KW - Diamond windows KW - Electron cyclotron heating KW - ITER KW - mm-Wave optics KW - Prototyping KW - Testing AB - Abstract The design of the ITER electron cyclotron launchers recently reached the preliminary design level - the last major milestone before design finalization. The ITER ECH system contains 24 installed gyrotrons providing a maximum ECH injected power of 20 MW through transmission lines towards the tokamak. There are two EC launcher types both using a front steering mirror; one equatorial launcher (EL) for plasma heating and four upper launchers (UL) for plasma mode stabilization (neoclassical tearing modes and the sawtooth instability). A wide steering angle range of the ULs allows focusing of the beam on magnetic islands which are expected on the rational magnetic flux surfaces q = 1 (sawtooth instability), q = 3/2 and q = 2 (NTMs). In this paper the preliminary design of the ITER ECH UL is presented, including the optical system and the structural components. Highlights of the design include the torus CVD-diamond windows, the frictionless, front steering mechanism and the plasma facing blanket shield module (BSM). Numerical simulations as well as prototype tests are used to verify the design. VL - 88 UR - http://www.sciencedirect.com/science/article/pii/S0920379613003347 U1 - FP U2 - TP U5 - 7d23bc282d1dfc079da6ee58f8bd69fb ER - TY - CONF T1 - Commissioning of inline ECE system within waveguide based ECRH transmission systems on ASDEX upgrade T2 - EPJ Web of Conferences Y1 - 2012 A1 - Bongers, W. A. A1 - Kasparek, W. A1 - Doelman, N. J. A1 - Van den Braber, R. A1 - van den Brand, H. A1 - Meo, F. A1 - M.R. de Baar A1 - Amerongen, F.J. A1 - Donne, A. J. H. A1 - Elzendoorn, B. S. Q. A1 - Erckmann, V. A1 - Goede, A. P. H. A1 - Giannone, L. A1 - Grünwald, G. A1 - Hollmann, F. A1 - Kaas, G. A1 - Krijger, B. A1 - Michel, G. A1 - Lubyako, L. A1 - Monaco, F. A1 - Noke, F. A1 - Petelin, M. A1 - Plaum, B. A1 - Purps, F. A1 - ten Pierik, J. G. W. A1 - Schuller, C. A1 - Slob, J.W. A1 - Stober, J. K. A1 - Schütz, H. A1 - Wagner, D. A1 - Westerhof, E. A1 - Ronden, D. M. S. JF - EPJ Web of Conferences VL - 32 U1 - FP U2 - TP U5 - 457c4cc21fbe31a8b0ed2ebc265305ab ER - TY - CONF T1 - Controlled Mirror Motion System for Resonant Diplexers in ECRH Applications T2 - EPJ Web of Conferences Y1 - 2012 A1 - Doelman, N. J. A1 - Van den Braber, R. A1 - Kasparek, W. A1 - Erckmann, V. A1 - Bongers, W. A. A1 - Krijger, B. A1 - Stober, J. A1 - Fritz, E. A1 - Dekker, B. A1 - Klop, W. A1 - Hollmann, F. A1 - Michel, G. A1 - Noke, F. A1 - Purps, F. A1 - M.R. de Baar A1 - Maraschek, M. A1 - Monaco, F. A1 - Müller, S. A1 - Schütz, H. A1 - Wagner, D. JF - EPJ Web of Conferences VL - 32 U1 - FP U2 - TP U5 - 2e56b521157cdd6a8067e9e2abc8475a ER - TY - CONF T1 - Status of resonant diplexer development for high-power ECRH applications T2 - EPJ Web of Conferences Y1 - 2012 A1 - Kasparek, W. A1 - Plaum, B. A1 - Lechte, C. A1 - Filipovic, E. A1 - Erckmann, V. A1 - Grünwald, G. A1 - Hollmann, F. A1 - Maraschek, M. A1 - Michel, G. A1 - Monaco, F. A1 - Müller, S. A1 - Noke, F. A1 - Purps, F. A1 - Schubert, M. A1 - Schütz, H. A1 - Stober, J. A1 - Wagner, D. A1 - Van den Braber, R. A1 - Doelman, N. J. A1 - Fritz, E. A1 - Bongers, W. A. A1 - Krijger, B. A1 - Petelin, M. A1 - Lubyako, L. A1 - Bruschi, A. A1 - Sakamoto, K. JF - EPJ Web of Conferences VL - 32 U1 - FP U2 - TP U5 - 035f34446654fa626a865edaeab4feb5 ER - TY - JOUR T1 - ECRH for JET: A feasibility study JF - Fusion Engineering and Design Y1 - 2011 A1 - Lennholm, M. A1 - Giruzzi, G. A1 - Parkin, A. A1 - Bouquey, F. A1 - Braune, H. A1 - Bruschi, A. A1 - de la Luna, E. A1 - Denisov, G. A1 - Edlington, T. A1 - Farina, D. A1 - Farthing, J. A1 - Figini, L. A1 - Garavaglia, S. A1 - J. Garcia A1 - Gerbaud, T. A1 - Granucci, G. A1 - Henderson, M. A1 - Horton, L. A1 - Kasparek, W. A1 - Khilar, P. A1 - Jennison, M. A1 - Kirneva, N. A1 - Kislov, D. A1 - Kuyanov, A. A1 - X. Litaudon A1 - Litvak, A. G. A1 - Moro, A. A1 - Nowak, S. A1 - Parail, V. A1 - Plaum, B. A1 - Rimini, F. A1 - Saibene, G. A1 - Sips, A. A1 - Sozzi, C. A1 - Späh, P. A1 - Trukhina, E. A1 - Vaccaro, A. A1 - Vdovin, V. KW - CURRENT DRIVE KW - electron cyclotron resonance heating KW - gyrotron KW - launcher KW - transmission line AB -For JET to fulfil its mission in preparing ITER operation, the installation of an electron cyclotron resonance heating system on JET would be desirable. The study described in this paper has investigated the feasibility of installing such a system on JET. The principal goals of such a system are: current drive over a range of radii for NTM stabilization, sawtooth control and current profile tailoring and central electron heating to equilibrate electron and ion temperatures in high performance discharges. The study concluded that a 12 gyrotron, 10 MW, system at the ITER frequency (170 GHz) adapted for fields of 2.7-3.3 T would be appropriate for the operation planned in JET. An antenna allowing toroidal and poloidal steering over a wide range is being designed, using the ITER upper launcher steering mechanism. The use of ITER diamond windows and transmission line technology is suggested while power supply solutions partially reusing existing JET power supplies are proposed. Detailed planning shows that such a system can be operational in about 5 years from the time that the decision to proceed is taken. The cost and required manpower associated with implementing such a system on JET has also been estimated. (C) 2011 EURATOM. Published by Elsevier B.V. All rights reserved.

VL - 86 SN - 0920-3796 IS - 6-8 N1 - ISI Document Delivery No.: 853KZTimes Cited: 0Cited Reference Count: 2126th Symposium on Fusion Technology (SOFT)SEP 27-OCT 01, 2010Porto, PORTUGALInst Plasmas Fusao Nucl (IPFN), Commiss European Union, Inst Soldadura Qualidade (ISQ), Fundacao Ciencia Tecnologia (FCT), Univ Tecnica Lisboa (UTL), TAP, Andante U1 -FP

U2 -TP

U5 - 5591da4092462cfd1e886148d5d553ed ER - TY - JOUR T1 - Overview of the ITER EC H&CD system and its capabilities JF - Fusion Engineering and Design Y1 - 2011 A1 - Omori, T. A1 - Henderson, M. A. A1 - Albajar, F. A1 - Alberti, S. A1 - Baruah, U. A1 - Bigelow, T. S. A1 - Becket, B. A1 - Bertizzolo, R. A1 - Bonicelli, T. A1 - Brusch, A. A1 - Caughman, J. B. A1 - Chavan, R. A1 - Cirant, S. A1 - Collazos, A. A1 - Cox, D. A1 - Darbos, C. A1 - M.R. de Baar A1 - Denisov, G. A1 - Farina, D. A1 - Gandini, F. A1 - Gassmann, T. A1 - Goodman, T. P. A1 - Heidinger, R. A1 - Hogge, J. P. A1 - Illy, S. A1 - Jean, O. A1 - Jin, J. A1 - Kajiwara, K. A1 - Kasparek, W. A1 - Kasugai, A. A1 - Kern, S. A1 - Kobayashi, N. A1 - Kumric, H. A1 - Landis, J. D. A1 - Moro, A. A1 - Nazare, C. A1 - Oda, Y. A1 - Pagonakis, I. A1 - Piosczyk, B. A1 - Platania, P. A1 - Plaum, B. A1 - Poli, E. A1 - Porte, L. A1 - Purohit, D. A1 - Ramponi, G. A1 - Rao, S. L. A1 - Rasmussen, D. A. A1 - Ronden, D. M. S. A1 - Rzesnicki, T. A1 - Saibene, G. A1 - Sakamoto, K. A1 - Sanchez, F. A1 - Scherer, T. A1 - Shapiro, M. A. A1 - Sozzi, C. A1 - Spaeh, P. A1 - Strauss, D. A1 - Sauter, O. A1 - Takahashi, K. A1 - Temkin, R. J. A1 - Thumm, M. A1 - Tran, M. Q. A1 - Udintsev, V.S. A1 - Zohm, H. KW - DESIGN KW - Electron Cyclotron KW - gyrotron KW - ITER KW - launcher KW - MHD stabilization AB -The Electron Cyclotron (EC) system for the ITER tokamak is designed to inject >= 20 MW RF power into the plasma for Heating and Current Drive (H&CD) applications. The EC system consists of up to 26 gyrotrons (between 1 and 2 MW each), the associated power supplies, 24 transmission lines and 5 launchers. The EC system has a diverse range of applications including central heating and current drive, current profile tailoring and control of plasma magneto-hydrodynamic (MUD) instabilities such as the sawtooth and neoclassical tearing modes (NTMs). This diverse range of applications requires the launchers to be capable of depositing the EC power across nearly the entire plasma cross section. This is achieved by two types of antennas: an equatorial port launcher (capable of injecting up to 20 MW from the plasma axis to mid-radius) and four upper port launchers providing access from inside of mid radius to near the plasma edge. The equatorial launcher design is optimized for central heating, current drive and profile tailoring, while the upper launcher should provide a very focused and peaked current density profile to control the plasma instabilities. The overall EC system has been modified during the past 3 years taking into account the issues identified in the ITER design review from 2007 and 2008 as well as integrating new technologies. This paper will review the principal objectives of the EC system, modifications made during the past 2 years and how the design is compliant with the principal objectives. (C) 2011 ITER Organization. Published by Elsevier B.V. All rights reserved.

VL - 86 SN - 0920-3796 IS - 6-8 N1 - ISI Document Delivery No.: 853KZTimes Cited: 1Cited Reference Count: 2526th Symposium on Fusion Technology (SOFT)SEP 27-OCT 01, 2010Porto, PORTUGALInst Plasmas Fusao Nucl (IPFN), Commiss European Union, Inst Soldadura Qualidade (ISQ), Fundacao Ciencia Tecnologia (FCT), Univ Tecnica Lisboa (UTL), TAP, Andante U1 -FP

U2 -TP

U5 - c370f03eff7f1a27a15a35be0d59bc06 ER - TY - JOUR T1 - High-Power Performance of a Resonant Diplexer for Advanced ECRH JF - Fusion Science and Technology Y1 - 2011 A1 - Kasparek, W. A1 - Van den Braber, R. A1 - Doelman, N. A1 - Fritz, E. A1 - Erckmann, V. A1 - Hollmann, F. A1 - Michel, G. A1 - Noke, F. A1 - Purps, F. A1 - Bongers, W. A1 - Krijger, B. A1 - Petelin, M. A1 - Lubyako, L. A1 - Bruschi, A. KW - BEAM KW - COMBINATION KW - Electron cyclotron heating KW - high-power diplexers KW - PHYSICS KW - power combination KW - SYSTEMS AB -Electron cyclotron resonance heating (ECRH) systems for next-step large fusion devices operate in continuous wave power in the multimegawatt range. The unique feature of narrow and well-localized power deposition assigns a key role to ECRH for different tasks, such as plasma start-up, electron heating, current drive, magnetohydrodynamic (MHD) control and profile shaping. The integration of high-power microwave diplexers in the transmission lines will improve the flexibility and efficiency while simultaneously reducing the complexity of large ECRH systems. They can serve as power or beam combiners, as slow and fast directional switches to toggle the power from continuously operating gyrotrons between two launchers, and as discriminators of low-power electron cyclotron emission (ECE) signals from high-power ECRH using a common transmission line and antenna. Among various design options a resonant diplexer with a narrow resonance was selected for application at ASDEX Upgrade. The design is driven by the specific physics requirements for MHD control experiments and possible use for line-of-sight ECE. The compact, waveguide-compatible design features a feedback-controlled mirror drive for tracking of the resonator to the gyrotron frequency. High-power, long-pulse tests were performed with the 140-GHz ECRH system for the stellarator W7-X. Results on the transmission characteristics, power combination, and stationary and controlled distribution of the input power to two outputs are presented. The qualification for in-line ECE was investigated.

VL - 59 SN - 1536-1055 UR - http://www.ans.org/store/article-11738/ IS - 4 U1 -FP

U2 -TP

U5 - 52cc196f6808a52b3588e32e05113cef ER - TY - JOUR T1 - Objectives, physics requirements and conceptual design of an ECRH system for JET JF - Nuclear Fusion Y1 - 2011 A1 - Giruzzi, G. A1 - Lennholm, M. A1 - Parkin, A. A1 - Aiello, G. A1 - Bellinger, M. A1 - Bird, J. A1 - Bouquey, F. A1 - Braune, H. A1 - Bruschi, A. A1 - Butcher, P. A1 - Clay, R. A1 - de la Luna, E. A1 - Denisov, G. A1 - Edlington, T. A1 - Fanthome, J. A1 - Farina, D. A1 - Farthing, J. A1 - Figini, L. A1 - Garavaglia, S. A1 - J. Garcia A1 - Gardener, M. A1 - Gerbaud, T. A1 - Granucci, G. A1 - Hay, J. A1 - Henderson, M. A1 - Hotchin, S. A1 - Ilyin, V. N. A1 - Jennison, M. A1 - Kasparek, W. A1 - Khilar, P. A1 - Kirneva, N. A1 - Kislov, D. A1 - Knipe, S. A1 - Kuyanov, A. A1 - X. Litaudon A1 - Litvak, A. G. A1 - Moro, A. A1 - Nowak, S. A1 - Parail, V. A1 - Plaum, B. A1 - Saibene, G. A1 - Sozzi, C. A1 - Späh, P. A1 - Strauss, D. A1 - Trukhina, E. A1 - Vaccaro, A. A1 - Vagdama, A. A1 - Vdovin, V. KW - CURRENT DRIVE KW - ITER KW - MODEL KW - PROGRESS KW - SAWTOOTH PERIOD AB -A study has been conducted to evaluate the feasibility of installing an electron cyclotron resonance heating (ECRH) and current drive system on the JET tokamak. The main functions of this system would be electron heating, sawtooth control, neoclassical tearing mode control to access high beta regimes and current profile control to access and maintain advanced plasma scenarios. This paper presents an overview of the studies performed in this framework by an EU-Russia project team. The motivations for this major upgrade of the JET heating systems and the required functions are discussed. The main results of the study are summarized. The usefulness of a 10 MW level EC system for JET is definitely confirmed by the physics studies. Neither feasibility issues nor strong limitations for any of the functions envisaged have been found. This has led to a preliminary conceptual design of the system.

VL - 51 SN - 0029-5515 IS - 6 N1 - ISI Document Delivery No.: 766MWTimes Cited: 2Cited Reference Count: 37 U1 -FP

U2 -TP

U5 - e451b1911c468bfd0a4f2e7f751d6c9f ER - TY - JOUR T1 - A remotely steered millimetre wave launcher for electron cyclotron heating and current drive on ITER JF - Fusion Engineering and Design Y1 - 2010 A1 - Bongers, W. A. A1 - M. F. Graswinckel A1 - Goede, A. P. H. A1 - Kasparek, W. A1 - Danilov, I. A1 - Curto, A. F. A1 - M.R. de Baar A1 - van den Berg, M. A. A1 - Donne, A. J. H. A1 - Elzendoorn, B. S. Q. A1 - Heidinger, R. A1 - Ivanov, P. A1 - Kruijt, O. G. A1 - Lamers, B. A1 - Meier, A. A1 - Piosczyk, B. A1 - Plaum, B. A1 - Ronden, D. M. S. A1 - Thoen, D. J. A1 - Schmid, M. A1 - Verhoeven, A. G. A. KW - 140 GHZ KW - ANTENNA KW - BEAMS KW - DESIGN KW - ECRH KW - electron cyclotron heating and current drive KW - GUIDE KW - ITER KW - LOSSES KW - Remote steering launcher KW - SYSTEM KW - TEARING MODE STABILIZATION KW - TESTS AB - High-power millimetre wave beams employed on ITER for heating and Current drive at the 170 GHz electron cyclotron resonance frequency require agile steering and tight focusing of the beams to suppress neoclassical tearing modes. This paper presents experimental validation of the remote steering (RS) concept of the ITER upper port millimetre wave beam launcher. Remote steering at the entrance of the upper port launcher rather than at the plasma side offers advantages in reliability and maintenance of the mechanically Vulnerable steering system. A one-to-one scale mock-up consisting of a transmission line, mitre bends, remote steering unit, vacuum window, square corrugated waveguide and front mirror simulates the ITER launcher design configuration. Validation is based on low-power heterodyne measurements of the complex amplitude and phase distribution of the steered Gaussian beam. High-power (400 kW) short Pulse (10 ms) operation under vacuum, diagnosed by calorimetry and thermography of the near- and far-field beam patterns, confirms high-power operation, but shows increased power loss attributed to deteriorating input beam quality compared with low-power operation. Polarization measurements show little variation with steering, which is important for effective current drive requiring elliptical polarization for O-mode excitation. Results show that a RS range Of LIP to -12 to +12 can be achieved with acceptable beam quality. These measurements confirm the back-up design of the ITER ECRH&CD launcher with future application for DEMO. (C) 2009 Elsevier B.V. All rights reserved. VL - 85 SN - 0920-3796 UR -