Plasma Material Interactions news

March 27th 2018
ITER reactor wall material exposed in Magnum-PSI
On Wednesday 21 March, the research facility Magnum-PSI at DIFFER (Dutch Institute for Fundamental Energy Research) set a new world record for longest exposure of a material to the harsh plasma conditions in future fusion reactors. Magnum-PSI exposed tungsten wall components to the equivalent of a full year of high power fusion operations in the future ITER reactor, 50 times more than the previous record. The exposure took only 18 hours to complete and shows Magnum-PSI's unique capability to investigate how materials hold up under a sizeable part of their lifetime in ITER.
November 27th 2017
analytical force balance on a dust particle in plasma
The journal Physics of Plasmas has chosen the paper An analytical force balance model for dust particles with size up to several Debye lengths (Damien Aussems et al.) as editor's pick in its November 2017 issue. In the paper, Damien and colleagues detail the various forces that work on a dust grain in a plasma environment during its growth process, which enables them to explain phases in a dust particle's development.
October 10th 2017
Thomas Morgan to lead work package on Liquid Metal Divertors
The EUROfusion research consortium has appointed DIFFER group leader Dr. Thomas Morgan as the leader of its new work package on self-repairing liquid metal walls for the exhaust of future fusion reactors. In the first two years of this European research package, Morgan wants to build on the field's current foundation in physics with a more engineering-oriented approach.
August 4th 2017
vapour shielding for fusion reactor walls
A thin vapour cloud in front of a liquid metal may be the solution to protecting the reactor walls of future fusion power plants to the extreme heat fluxes encountered. In Nature Communications, PhD candidate Stein van Eden and colleagues at DIFFER and Ghent University presents measurements of a vapour cloud catching and redistributing the energy from the incoming plasma in the reactor. The work indicates that liquid metal walls are a promising concept for future fusion reactors like DEMO.

Pages