TY - JOUR
T1 - Overview of physics studies on ASDEX Upgrade
JF - Nuclear Fusion
Y1 - 2019
A1 - Meyer, H.
A1 - Angioni, C.
A1 - C.G. Albert
A1 - N. Arden
A1 - R. Arredondo Parra
A1 - Asunta, O.
A1 - de Baar, M.
A1 - Balden, M.
A1 - V. Bandaru
A1 - Behler, K.
A1 - Bergmann, A.
A1 - Bernardo, J.
A1 - Bernert, M.
A1 - A. Biancalani
A1 - Bilato, R.
A1 - Birkenmeier, G.
A1 - Blanken, T. C.
A1 - Bobkov, V.
A1 - Bock, A.
A1 - Bolzonella, T.
A1 - A. Bortolon
A1 - B. Böswirth
A1 - Bottereau, C.
A1 - Bottino, A.
A1 - van den Brand, H.
A1 - Brezinsek, S.
A1 - Brida, D.
A1 - Brochard, F.
A1 - C. Bruhn
A1 - Buchanan, J.
A1 - Buhler, A.
A1 - Burckhart, A.
A1 - Camenen, Y.
A1 - D. Carlton
A1 - Carr, M.
A1 - Carralero, D.
A1 - C. Castaldo
A1 - Cavedon, M.
A1 - C. Cazzaniga
A1 - S. Ceccuzzi
A1 - Challis, C.
A1 - Chankin, A.
A1 - Chapman, S.
A1 - C. Cianfarani
A1 - Clairet, F.
A1 - Coda, S.
A1 - Coelho, R.
A1 - Coenen, J. W.
A1 - Colas, L.
A1 - Conway, G. D.
A1 - Costea, S.
A1 - Coster, D. P.
A1 - Cote, T. B.
A1 - Creely, A.
A1 - G. Croci
A1 - Cseh, G.
A1 - Czarnecka, A.
A1 - I. Cziegler
A1 - den Harder, N.
A1 - Jaulmes, F.
A1 - Kantor, M.
A1 - Karhunen, J.
A1 - Miettunen, J.
A1 - Vanovac, B.
A1 - EUROfusion MST1 Team
A1 - et al.
AB - The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m−1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of ‘natural’ no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle—measured for the first time—or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.
PB - IOP Publishing
VL - 59
IS - 11
U1 - FP
U2 - TP
U5 - 87a8b0ff65b4dc41f80072ac74a6868a
ER -
TY - JOUR
T1 - Overview of ASDEX Upgrade results
JF - Nuclear Fusion
Y1 - 2013
A1 - Stroth, U.
A1 - Adamek, J.
A1 - Aho-Mantila, L.
A1 - Akaslompolo, S.
A1 - Amdor, C.
A1 - Angioni, C.
A1 - Balden, M.
A1 - Bardin, S.
A1 - L. Barrera Orte
A1 - Behler, K.
A1 - Belonohy, E.
A1 - Bergmann, A.
A1 - Bernert, M.
A1 - Bilato, R.
A1 - Birkenmeier, G.
A1 - Bobkov, V.
A1 - Boom, J.
A1 - Bottereau, C.
A1 - Bottino, A.
A1 - Braun, F.
A1 - Brezinsek, S.
A1 - Brochard, T.
A1 - M. Brüdgam
A1 - Buhler, A.
A1 - Burckhart, A.
A1 - Casson, F. J.
A1 - Chankin, A.
A1 - Chapman, I.
A1 - Clairet, F.
A1 - Classen, I.G.J.
A1 - Coenen, J. W.
A1 - Conway, G. D.
A1 - Coster, D. P.
A1 - Curran, D.
A1 - da Silva, F.
A1 - P. de Marné
A1 - D'Inca, R.
A1 - Douai, D.
A1 - Drube, R.
A1 - Dunne, M.
A1 - Dux, R.
A1 - Eich, T.
A1 - Eixenberger, H.
A1 - Endstrasser, N.
A1 - Engelhardt, K.
A1 - Esposito, B.
A1 - Fable, E.
A1 - Fischer, R.
A1 - H. Fünfgelder
A1 - Fuchs, J. C.
A1 - K. Gál
A1 - M. García Muñoz
A1 - Geiger, B.
A1 - Giannone, L.
A1 - T. Görler
A1 - da Graca, S.
A1 - Greuner, H.
A1 - Gruber, O.
A1 - Gude, A.
A1 - Guimarais, L.
A1 - S. Günter
A1 - Haas, G.
A1 - Hakola, A. H.
A1 - Hangan, D.
A1 - Happel, T.
A1 - T. Härtl
A1 - Hauff, T.
A1 - Heinemann, B.
A1 - Herrmann, A.
A1 - Hobirk, J.
A1 - H. Höhnle
A1 - M. Hölzl
A1 - Hopf, C.
A1 - Houben, A.
A1 - Igochine, V.
A1 - Ionita, C.
A1 - Janzer, A.
A1 - Jenko, F.
A1 - Kantor, M.
A1 - C.-P. Käsemann
A1 - Kallenbach, A.
A1 - S. Kálvin
A1 - Kantor, M.
A1 - Kappatou, A.
A1 - Kardaun, O.
A1 - Kasparek, W.
A1 - Kaufmann, M.
A1 - Kirk, A.
A1 - H.-J. Klingshirn
A1 - Kocan, M.
A1 - Kocsis, G.
A1 - Konz, C.
A1 - Koslowski, R.
A1 - Krieger, K.
A1 - Kubic, M.
A1 - Kurki-Suonio, T.
A1 - Kurzan, B.
A1 - Lackner, K.
A1 - Lang, P. T.
A1 - Lauber, P.
A1 - Laux, M.
A1 - Lazaros, A.
A1 - Leipold, F.
A1 - Leuterer, F.
A1 - Lindig, S.
A1 - Lisgo, S.
A1 - Lohs, A.
A1 - Lunt, T.
A1 - Maier, H.
A1 - Makkonen, T.
A1 - Mank, K.
A1 - M.-E. Manso
A1 - Maraschek, M.
A1 - Mayer, M.
A1 - McCarthy, P. J.
A1 - McDermott, R.
A1 - Mehlmann, F.
A1 - Meister, H.
A1 - Menchero, L.
A1 - Meo, F.
A1 - Merkel, P.
A1 - Merkel, R.
A1 - Mertens, V.
A1 - Merz, F.
A1 - Mlynek, A.
A1 - Monaco, F.
A1 - Müller, S.
A1 - H.W. Müller
A1 - M. Münich
A1 - Neu, G.
A1 - Neu, R.
A1 - Neuwirth, D.
A1 - Nocente, M.
A1 - Nold, B.
A1 - Noterdaeme, J. M.
A1 - Pautasso, G.
A1 - Pereverzev, G.
A1 - B. Plöckl
A1 - Podoba, Y.
A1 - Pompon, F.
A1 - Poli, E.
A1 - Polozhiy, K.
A1 - Potzel, S.
A1 - M. J. Pueschel
A1 - Putterich, T.
A1 - Rathgeber, S. K.
A1 - Raupp, G.
A1 - Reich, M.
A1 - Reimold, F.
A1 - Ribeiro, T.
A1 - Riedl, R.
A1 - Rohde, V.
A1 - G. J. van Rooij
A1 - Roth, J.
A1 - Rott, M.
A1 - Ryter, F.
A1 - Salewski, M.
A1 - Santos, J.
A1 - Sauter, P.
A1 - Scarabosio, A.
A1 - Schall, G.
A1 - Schmid, K.
A1 - Schneider, P. A.
A1 - Schneider, W.
A1 - Schrittwieser, R.
A1 - Schubert, M.
A1 - Schweinzer, J.
A1 - Scott, B.
A1 - Sempf, M.
A1 - Sertoli, M.
A1 - Siccinio, M.
A1 - Sieglin, B.
A1 - Sigalov, A.
A1 - Silva, A.
A1 - Sommer, F.
A1 - A. Stäbler
A1 - Stober, J.
A1 - Streibl, B.
A1 - Strumberger, E.
A1 - Sugiyama, K.
A1 - Suttrop, W.
A1 - Tala, T.
A1 - Tardini, G.
A1 - Teschke, M.
A1 - Tichmann, C.
A1 - Told, D.
A1 - Treutterer, W.
A1 - Tsalas, M.
A1 - VanZeeland, M. A.
A1 - Varela, P.
A1 - Veres, G.
A1 - Vicente, J.
A1 - Vianello, N.
A1 - Vierle, T.
A1 - Viezzer, E.
A1 - Viola, B.
A1 - Vorpahl, C.
A1 - Wachowski, M.
A1 - Wagner, D.
A1 - Wauters, T.
A1 - Weller, A.
A1 - Wenninger, R.
A1 - Wieland, B.
A1 - Willensdorfer, M.
A1 - Wischmeier, M.
A1 - Wolfrum, E.
A1 - E. Würsching
A1 - Yu, Q.
A1 - Zammuto, I.
A1 - Zasche, D.
A1 - Zehetbauer, T.
A1 - Zhang, Y.
A1 - Zilker, M.
A1 - Zohm, H.
AB - The medium size divertor tokamak ASDEX Upgrade (major and minor radii 1.65 m and 0.5 m, respectively, magnetic-field strength 2.5 T) possesses flexible shaping and versatile heating and current drive systems. Recently the technical capabilities were extended by increasing the electron cyclotron resonance heating (ECRH) power, by installing 2 × 8 internal magnetic perturbation coils, and by improving the ion cyclotron range of frequency compatibility with the tungsten wall. With the perturbation coils, reliable suppression of large type-I edge localized modes (ELMs) could be demonstrated in a wide operational window, which opens up above a critical plasma pedestal density. The pellet fuelling efficiency was observed to increase which gives access to H-mode discharges with peaked density profiles at line densities clearly exceeding the empirical Greenwald limit. Owing to the increased ECRH power of 4 MW, H-mode discharges could be studied in regimes with dominant electron heating and low plasma rotation velocities, i.e. under conditions particularly relevant for ITER. The ion-pressure gradient and the neoclassical radial electric field emerge as key parameters for the transition. Using the total simultaneously available heating power of 23 MW, high performance discharges have been carried out where feed-back controlled radiative cooling in the core and the divertor allowed the divertor peak power loads to be maintained below 5 MW m −2 . Under attached divertor conditions, a multi-device scaling expression for the power-decay length was obtained which is independent of major radius and decreases with magnetic field resulting in a decay length of 1 mm for ITER. At higher densities and under partially detached conditions, however, a broadening of the decay length is observed. In discharges with density ramps up to the density limit, the divertor plasma shows a complex behaviour with a localized high-density region in the inner divertor before the outer divertor detaches. Turbulent transport is studied in the core and the scrape-off layer (SOL). Discharges over a wide parameter range exhibit a close link between core momentum and density transport. Consistent with gyro-kinetic calculations, the density gradient at half plasma radius determines the momentum transport through residual stress and thus the central toroidal rotation. In the SOL a close comparison of probe data with a gyro-fluid code showed excellent agreement and points to the dominance of drift waves. Intermittent structures from ELMs and from turbulence are shown to have high ion temperatures even at large distances outside the separatrix.
VL - 53
UR - http://hdl.handle.net/11858/00-001M-0000-0026-E166-7
IS - 10
U1 - FP
U2 - PDG
U5 - 0b5b08fdc590c85cc01e6d1db1958848
ER -
TY - JOUR
T1 - Overview of ASDEX Upgrade results
JF - Nuclear Fusion
Y1 - 2011
A1 - Kallenbach, A.
A1 - Adamek, J.
A1 - Aho-Mantila, L.
A1 - Akaslompolo, S.
A1 - Angioni, C.
A1 - Atanasiu, C. V.
A1 - Balden, M.
A1 - Behler, K.
A1 - Belonohy, E.
A1 - Bergmann, A.
A1 - Bernert, M.
A1 - Bilato, R.
A1 - Bobkov, V.
A1 - Boom, J.
A1 - Bottino, A.
A1 - Braun, F.
A1 - Brudgam, M.
A1 - Buhler, A.
A1 - Burckhart, A.
A1 - Chankin, A.
A1 - Classen, I.G.J.
A1 - Conway, G. D.
A1 - Coster, D. P.
A1 - de Marne, P.
A1 - D'Inca, R.
A1 - Drube, R.
A1 - Dux, R.
A1 - Eich, T.
A1 - Endstrasser, N.
A1 - Engelhardt, K.
A1 - Esposito, B.
A1 - Fable, E.
A1 - Fahrbach, H. U.
A1 - Fattorini, L.
A1 - Fischer, R.
A1 - Flaws, A.
A1 - Funfgelder, H.
A1 - Fuchs, J. C.
A1 - Gal, K.
A1 - Munoz, M. G.
A1 - Geiger, B.
A1 - Adamov, M. G.
A1 - Giannone, L.
A1 - Giroud, C.
A1 - Gorler, T.
A1 - da Graca, S.
A1 - Greuner, H.
A1 - Gruber, O.
A1 - Gude, A.
A1 - Gunter, S.
A1 - Haas, G.
A1 - Hakola, A. H.
A1 - Hangan, D.
A1 - Happel, T.
A1 - Hauff, T.
A1 - Heinemann, B.
A1 - Herrmann, A.
A1 - Hicks, N.
A1 - Hobirk, J.
A1 - Hohnle, H.
A1 - Holzl, M.
A1 - Hopf, C.
A1 - Horton, L.
A1 - Huart, M.
A1 - Igochine, V.
A1 - Ionita, C.
A1 - Janzer, A.
A1 - Jenko, F.
A1 - Kasemann, C. P.
A1 - Kalvin, S.
A1 - Kardaun, O.
A1 - Kaufmann, M.
A1 - Kirk, A.
A1 - Klingshirn, H. J.
A1 - Kocan, M.
A1 - Kocsis, G.
A1 - Kollotzek, H.
A1 - Konz, C.
A1 - Koslowski, R.
A1 - Krieger, K.
A1 - Kurki-Suonio, T.
A1 - Kurzan, B.
A1 - Lackner, K.
A1 - Lang, P. T.
A1 - Lauber, P.
A1 - Laux, M.
A1 - Leipold, F.
A1 - Leuterer, F.
A1 - Lohs, A.
A1 - N C Luhmann Jr.
A1 - Lunt, T.
A1 - Lyssoivan, A.
A1 - Maier, H.
A1 - Maggi, C.
A1 - Mank, K.
A1 - Manso, M. E.
A1 - Maraschek, M.
A1 - Martin, P.
A1 - Mayer, M.
A1 - McCarthy, P. J.
A1 - McDermott, R.
A1 - Meister, H.
A1 - Menchero, L.
A1 - Meo, F.
A1 - Merkel, P.
A1 - Merkel, R.
A1 - Mertens, V.
A1 - Merz, F.
A1 - Mlynek, A.
A1 - Monaco, F.
A1 - Muller, H. W.
A1 - Munich, M.
A1 - Murmann, H.
A1 - Neu, G.
A1 - Neu, R.
A1 - Nold, B.
A1 - Noterdaeme, J. M.
A1 - Park, H. K.
A1 - Pautasso, G.
A1 - Pereverzev, G.
A1 - Podoba, Y.
A1 - Pompon, F.
A1 - Poli, E.
A1 - Polochiy, K.
A1 - Potzel, S.
A1 - Prechtl, M.
A1 - M. J. Pueschel
A1 - Putterich, T.
A1 - Rathgeber, S. K.
A1 - Raupp, G.
A1 - Reich, M.
A1 - Reiter, B.
A1 - Ribeiro, T.
A1 - Riedl, R.
A1 - Rohde, V.
A1 - Roth, J.
A1 - Rott, M.
A1 - Ryter, F.
A1 - Sandmann, W.
A1 - Santos, J.
A1 - Sassenberg, K.
A1 - Sauter, P.
A1 - Scarabosio, A.
A1 - Schall, G.
A1 - Schmid, K.
A1 - Schneider, P. A.
A1 - Schneider, W.
A1 - Schramm, G.
A1 - Schrittwieser, R.
A1 - Schweinzer, J.
A1 - Scott, B.
A1 - Sempf, M.
A1 - Serra, F.
A1 - Sertoli, M.
A1 - Siccinio, M.
A1 - Sigalov, A.
A1 - Silva, A.
A1 - Sips, A.C.C.
A1 - Sommer, F.
A1 - Stabler, A.
A1 - Stober, J.
A1 - Streibl, B.
A1 - Strumberger, E.
A1 - Sugiyama, K.
A1 - Suttrop, W.
A1 - Szepesi, T.
A1 - Tardini, G.
A1 - Tichmann, C.
A1 - Told, D.
A1 - Treutterer, W.
A1 - Urso, L.
A1 - Varela, P.
A1 - Vincente, J.
A1 - Vianello, N.
A1 - Vierle, T.
A1 - Viezzer, E.
A1 - Vorpahl, C.
A1 - Wagner, D.
A1 - Weller, A.
A1 - Wenninger, R.
A1 - Wieland, B.
A1 - Wigger, C.
A1 - Willensdorfer, M.
A1 - Wischmeier, M.
A1 - Wolfrum, E.
A1 - Wursching, E.
A1 - Yadikin, D.
A1 - Yu, Q.
A1 - Zammuto, I.
A1 - Zasche, D.
A1 - Zehetbauer, T.
A1 - Zhang, Y.
A1 - Zilker, M.
A1 - Zohm, H.
KW - PHYSICS
KW - REFLECTOMETRY
KW - TOKAMAK
AB - The ASDEX Upgrade programme is directed towards physics input to critical elements of the ITER design and the preparation of ITER operation, as well as addressing physics issues for a future DEMO design. After the finalization of the tungsten coating of the plasma facing components, the re-availability of all flywheel-generators allowed high-power operation with up to 20 MW heating power at I(p) up to 1.2 MA. Implementation of alternative ECRH schemes (140 GHz O2- and X3-mode) facilitated central heating above n(e) = 1.2 x 10(20) m(-3) and low q(95) operation at B(t) = 1.8 T. Central O2-mode heating was successfully used in high P/R discharges with 20 MW total heating power and divertor load control with nitrogen seeding. Improved energy confinement is obtained with nitrogen seeding both for type-I and type-III ELMy conditions. The main contributor is increased plasma temperature, no significant changes in the density profile have been observed. This behaviour may be explained by higher pedestal temperatures caused by ion dilution in combination with a pressure limited pedestal and hollow nitrogen profiles. Core particle transport simulations with gyrokinetic calculations have been benchmarked by dedicated discharges using variations of the ECRH deposition location. The reaction of normalized electron density gradients to variations of temperature gradients and the T(e)/T(i) ratio could be well reproduced. Doppler reflectometry studies at the L-H transition allowed the disentanglement of the interplay between the oscillatory geodesic acoustic modes, turbulent fluctuations and the mean equilibrium E x B flow in the edge negative E(r) well region just inside the separatrix. Improved pedestal diagnostics revealed also a refined picture of the pedestal transport in the fully developed H-mode type-I ELM cycle. Impurity ion transport turned out to be neoclassical in between ELMs. Electron and energy transport remain anomalous, but exhibit different recovery time scales after an ELM. After recovery of the pre-ELM profiles, strong fluctuations develop in the gradients of n(e) and T(e). The occurrence of the next ELM cannot be explained by the local current diffusion time scale, since this turns out to be too short. Fast ion losses induced by shear Alfven eigenmodes have been investigated by time-resolved energy and pitch angle measurements. This allowed the separation of the convective and diffusive loss mechanisms.
VL - 51
SN - 0029-5515
IS - 9
N1 - ISI Document Delivery No.: 818DPTimes Cited: 1Cited Reference Count: 45SI
U1 - FP
U2 - PDG
U5 - a193177a90d5b600862ca1e40bcc67af
ER -
TY - JOUR
T1 - Overview of ASDEX upgrade results
JF - Nuclear Fusion
Y1 - 2003
A1 - Zohm, H.
A1 - Angioni, C.
A1 - Arslanbekov, R.
A1 - Atanasiu, C.
A1 - Becker, G.
A1 - Becker, W.
A1 - Behler, K.
A1 - Behringer, K.
A1 - Bergmann, A.
A1 - Bilato, R.
A1 - Bobkov, V.
A1 - Bolshukhin, D.
A1 - Bolzonella, T.
A1 - Borrass, K.
A1 - Brambilla, M.
A1 - Braun, F.
A1 - Buhler, A.
A1 - Carlson, A.
A1 - Conway, G. D.
A1 - Coster, D. P.
A1 - Drube, R.
A1 - Dux, R.
A1 - Egorov, S.
A1 - Eich, T.
A1 - Engelhardt, K.
A1 - Fahrbach, H. U.
A1 - Fantz, U.
A1 - Faugel, H.
A1 - Finken, K.H.
A1 - Foley, M.
A1 - Franzen, P.
A1 - Fuchs, J. C.
A1 - Gafert, J.
A1 - Fournier, K. B.
A1 - Gantenbein, G.
A1 - Gehre, O.
A1 - Geier, A.
A1 - Gernhardt, J.
A1 - Goodman, T.
A1 - Gruber, O.
A1 - Gude, A.
A1 - Gunter, S.
A1 - Haas, G.
A1 - Hartmann, D.
A1 - Heger, B.
A1 - Heinemann, B.
A1 - Herrmann, A.
A1 - Hobirk, J.
A1 - Hofmeister, F.
A1 - Hohenocker, H.
A1 - Horton, L. D.
A1 - Igochine, V.
A1 - Jacchia, A.
A1 - Jakobi, M.
A1 - Jenko, F.
A1 - Kallenbach, A.
A1 - Kardaun, O.
A1 - Kaufmann, M.
A1 - Keller, A.
A1 - Kendl, A.
A1 - Kim, J. W.
A1 - Kirov, K.
A1 - Kochergov, R.
A1 - Kollotzek, H.
A1 - Kraus, W.
A1 - Krieger, K.
A1 - Kurki-Suonio, T.
A1 - Kurzan, B.
A1 - Lang, P. T.
A1 - Lasnier, C.
A1 - Lauber, P.
A1 - Laux, M.
A1 - Leonard, A. W.
A1 - Leuterer, F.
A1 - Lohs, A.
A1 - Lorenz, A.
A1 - Lorenzini, R.
A1 - Maggi, C.
A1 - Maier, H.
A1 - Mank, K.
A1 - Manso, M. E.
A1 - Mantica, P.
A1 - Maraschek, M.
A1 - Martines, E.
A1 - Mast, K. F.
A1 - McCarthy, P.
A1 - Meisel, D.
A1 - Meister, H.
A1 - Meo, F.
A1 - Merkel, P.
A1 - Merkel, R.
A1 - Merkl, D.
A1 - Mertens, V.
A1 - Monaco, F.
A1 - Muck, A.
A1 - Muller, H. W.
A1 - Munich, M.
A1 - Murmann, H.
A1 - Na, Y. S.
A1 - Neu, G.
A1 - Neu, R.
A1 - Neuhauser, J.
A1 - Nguyen, F.
A1 - Nishijima, D.
A1 - Nishimura, Y.
A1 - Noterdaeme, J. M.
A1 - Nunes, I.
A1 - Pautasso, G.
A1 - Peeters, A.G.
A1 - Pereverzev, G.
A1 - Pinches, S. D.
A1 - Poli, E.
A1 - Proschek, M.
A1 - Pugno, R.
A1 - Quigley, E.
A1 - Raupp, G.
A1 - Reich, M.
A1 - Ribeiro, T.
A1 - Riedl, R.
A1 - Rohde, V.
A1 - Roth, J.
A1 - Ryter, F.
A1 - Saarelma, S.
A1 - Sandmann, W.
A1 - Savtchkov, A.
A1 - Sauter, O.
A1 - Schade, S.
A1 - Schilling, H. B.
A1 - Schneider, W.
A1 - Schramm, G.
A1 - Schwarz, E.
A1 - Schweinzer, J.
A1 - Schweizer, S.
A1 - Scott, B. D.
A1 - Seidel, U.
A1 - Serra, F.
A1 - Sesnic, S.
A1 - Sihler, C.
A1 - Silva, A.
A1 - Sips, A.C.C.
A1 - Speth, E.
A1 - Stabler, A.
A1 - Steuer, K. H.
A1 - Stober, J.
A1 - Streibl, B.
A1 - Strumberger, E.
A1 - Suttrop, W.
A1 - Tabasso, A.
A1 - Tanga, A.
A1 - Tardini, G.
A1 - Tichmann, C.
A1 - Treutterer, W.
A1 - Troppmann, M.
A1 - Urano, H.
A1 - Varela, P.
A1 - Vollmer, O.
A1 - Wagner, D.
A1 - Wenzel, U.
A1 - Wesner, F.
A1 - Westerhof, E.
A1 - Wolf, R.
A1 - Wolfrum, E.
A1 - Wursching, E.
A1 - Yoon, S. W.
A1 - Yu, Q.
A1 - Zasche, D.
A1 - Zehetbauer, T.
A1 - Zehrfeld, H. P.
VL - 43
SN - 0029-5515
UR - ://000187838300005
U1 - Fusion Physics
U2 - Tokamak physics
U5 - 988d14e5a44c19882b112fcb8692c1fb
ER -