TY - JOUR
T1 - Overview of physics studies on ASDEX Upgrade
JF - Nuclear Fusion
Y1 - 2019
A1 - Meyer, H.
A1 - Angioni, C.
A1 - C.G. Albert
A1 - N. Arden
A1 - R. Arredondo Parra
A1 - Asunta, O.
A1 - de Baar, M.
A1 - Balden, M.
A1 - V. Bandaru
A1 - Behler, K.
A1 - Bergmann, A.
A1 - Bernardo, J.
A1 - Bernert, M.
A1 - A. Biancalani
A1 - Bilato, R.
A1 - Birkenmeier, G.
A1 - Blanken, T. C.
A1 - Bobkov, V.
A1 - Bock, A.
A1 - Bolzonella, T.
A1 - A. Bortolon
A1 - B. Böswirth
A1 - Bottereau, C.
A1 - Bottino, A.
A1 - van den Brand, H.
A1 - Brezinsek, S.
A1 - Brida, D.
A1 - Brochard, F.
A1 - C. Bruhn
A1 - Buchanan, J.
A1 - Buhler, A.
A1 - Burckhart, A.
A1 - Camenen, Y.
A1 - D. Carlton
A1 - Carr, M.
A1 - Carralero, D.
A1 - C. Castaldo
A1 - Cavedon, M.
A1 - C. Cazzaniga
A1 - S. Ceccuzzi
A1 - Challis, C.
A1 - Chankin, A.
A1 - Chapman, S.
A1 - C. Cianfarani
A1 - Clairet, F.
A1 - Coda, S.
A1 - Coelho, R.
A1 - Coenen, J. W.
A1 - Colas, L.
A1 - Conway, G. D.
A1 - Costea, S.
A1 - Coster, D. P.
A1 - Cote, T. B.
A1 - Creely, A.
A1 - G. Croci
A1 - Cseh, G.
A1 - Czarnecka, A.
A1 - I. Cziegler
A1 - den Harder, N.
A1 - Jaulmes, F.
A1 - Kantor, M.
A1 - Karhunen, J.
A1 - Miettunen, J.
A1 - Vanovac, B.
A1 - EUROfusion MST1 Team
A1 - et al.
AB - The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m−1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of ‘natural’ no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle—measured for the first time—or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.
PB - IOP Publishing
VL - 59
IS - 11
U1 - FP
U2 - TP
U5 - 87a8b0ff65b4dc41f80072ac74a6868a
ER -
TY - JOUR
T1 - Physics research on the TCV tokamak facility: from conventional to alternative scenarios and beyond
JF - Nuclear Fusion
Y1 - 2019
A1 - Coda, S.
A1 - Agostini, M.
A1 - Albanese, R.
A1 - Alberti, S.
A1 - Alessi, E.
A1 - Allan, S.
A1 - Hogeweij, G. M. D.
A1 - Perek, A.
A1 - Ravensbergen, T.
A1 - Vijvers, W. A. J.
A1 - Allcock, J.
A1 - Ambrosino, R.
A1 - Anand, H.
A1 - Andrebe, Y.
A1 - EUROfusion MST1 Team
A1 - et al.
AB - The research program of the TCV tokamak ranges from conventional to advanced-tokamak scenarios and alternative divertor configurations, to exploratory plasmas driven by theoretical insight, exploiting the device's unique shaping capabilities. Disruption avoidance by real-time locked mode prevention or unlocking with electron-cyclotron resonance heating (ECRH) was thoroughly documented, using magnetic and radiation triggers. Runaway generation with high-Z noble-gas injection and runaway dissipation by subsequent Ne or Ar injection were studied for model validation. The new 1 MW neutral beam injector has expanded the parameter range, now encompassing ELMy H-modes in an ITER-like shape and nearly non-inductive H-mode discharges sustained by electron cyclotron and neutral beam current drive. In the H-mode, the pedestal pressure increases modestly with nitrogen seeding while fueling moves the density pedestal outwards, but the plasma stored energy is largely uncorrelated to either seeding or fueling. High fueling at high triangularity is key to accessing the attractive small edge-localized mode (type-II) regime. Turbulence is reduced in the core at negative triangularity, consistent with increased confinement and in accord with global gyrokinetic simulations. The geodesic acoustic mode, possibly coupled with avalanche events, has been linked with particle flow to the wall in diverted plasmas. Detachment, scrape-off layer transport, and turbulence were studied in L- and H-modes in both standard and alternative configurations (snowflake, super-X, and beyond). The detachment process is caused by power 'starvation' reducing the ionization source, with volume recombination playing only a minor role. Partial detachment in the H-mode is obtained with impurity seeding and has shown little dependence on flux expansion in standard single-null geometry. In the attached L-mode phase, increasing the outer connection length reduces the in–out heat-flow asymmetry. A doublet plasma, featuring an internal X-point, was achieved successfully, and a transport barrier was observed in the mantle just outside the internal separatrix. In the near future variable-configuration baffles and possibly divertor pumping will be introduced to investigate the effect of divertor closure on exhaust and performance, and 3.5 MW ECRH and 1 MW neutral beam injection heating will be added.
VL - 59
IS - 11
U1 - FP
U2 - PEPD
U5 - d50a5905a84255c86ad6d49b1cfa1569
ER -
TY - JOUR
T1 - Filamentary velocity scaling validation in the TCV tokamak
JF - Physics of Plasmas
Y1 - 2018
A1 - Tsui, C. K.
A1 - Boedo, J. A.
A1 - Myra, J. R.
A1 - Duval, B.
A1 - Labit, B.
A1 - Theiler, C.
A1 - Vianello, N.
A1 - Vijvers, W. A. J.
A1 - Reimerdes, H.
A1 - Coda, S.
A1 - Février, O.
A1 - Harrison, J. R.
A1 - Horacek, J.
A1 - Lipschultz, B.
A1 - Maurizio, R.
A1 - Nespoli, F.
A1 - Sheikh, U.
A1 - Verhaegh, K.
A1 - Walkden, N.
A1 - TCV team
A1 - EUROfusion MST1 Team
AB - A large database of reciprocating probe data from the edge plasma of TCV (Tokamak à Configuration Variable) is used to test the radial velocity scalings of filaments from analytical theory [Myra et al., Phys. Plasmas 13, 112502 (2006)]. The measured velocities are mainly scattered between zero and a maximum velocity which varies as a function of size and collisionality in agreement with the analytical scalings. The scatter is consistent with mechanisms that tend to slow the velocity of individual filaments. While the radial velocities were mainly clustered between 0.5 and 2 km/s, a minority reached outward velocities as high as 5 km/s or inward velocities as high as −4 km/s. Inward moving filaments are only observed in regions of high poloidal velocity shear in discharges with B × ∇B away from the X-point, a new finding. The filaments have diameters clustered between 3 and 11 mm, and normalized sizes aˆ clustered between 0.3 and 1.1, such that most filaments populate the resistive-ballooning regime; therefore, most of the filaments in TCV have radial velocities with little or no dependence on collisionality. Improvements in cross-correlation techniques and conditional averaging techniques are discussed which reduce the sizes determined for the largest filaments, including those larger than the scrape-off layer.
VL - 25
IS - 7
U1 - FP
U2 - PEPD
U5 - 704d56f331c2957ba040347833d95417
ER -
TY - JOUR
T1 - Overview of the TCV tokamak program: scientific progress and facility upgrades
JF - Nuclear Fusion
Y1 - 2017
A1 - Coda, S.
A1 - Ahn, J.
A1 - Albanese, R.
A1 - Alberti, S.
A1 - Alessi, E.
A1 - Citrin, J.
A1 - Hogeweij, D.
A1 - Vijvers, W. A. J.
A1 - EUROfusion MST1 Team
A1 - et al.
AB - The TCV tokamak is augmenting its unique historical capabilities (strong shaping, strong electron heating) with ion heating, additional electron heating compatible with high densities, and variable divertor geometry, in a multifaceted upgrade program designed to broaden its operational range without sacrificing its fundamental flexibility. The TCV program is rooted in a three-pronged approach aimed at ITER support, explorations towards DEMO, and fundamental research. A 1 MW, tangential neutral beam injector (NBI) was recently installed and promptly extended the TCV parameter range, with record ion temperatures and toroidal rotation velocities and measurable neutral-beam current drive. ITER-relevant scenario development has received particular attention, with strategies aimed at maximizing performance through optimized discharge trajectories to avoid MHD instabilities, such as peeling-ballooning and neoclassical tearing modes. Experiments on exhaust physics have focused particularly on detachment, a necessary step to a DEMO reactor, in a comprehensive set of conventional and advanced divertor concepts. The specific theoretical prediction of an enhanced radiation region between the two X-points in the low-field-side snowflake-minus configuration was experimentally confirmed. Fundamental investigations of the power decay length in the scrape-off layer (SOL) are progressing rapidly, again in widely varying configurations and in both D and He plasmas; in particular, the double decay length in L-mode limited plasmas was found to be replaced by a single length at high SOL resistivity. Experiments on disruption mitigation by massive gas injection and electron-cyclotron resonance heating (ECRH) have begun in earnest, in parallel with studies of runaway electron generation and control, in both stable and disruptive conditions; a quiescent runaway beam carrying the entire electrical current appears to develop in some cases. Developments in plasma control have benefited from progress in individual controller design and have evolved steadily towards controller integration, mostly within an environment supervised by a tokamak profile control simulator. TCV has demonstrated effective wall conditioning with ECRH in He in support of the preparations for JT-60SA operation.
VL - 57
IS - 10
U1 - FP
U2 - PEPD
U5 - 2a93b89d78ec281b0b5b9970ec417422
ER -
TY - JOUR
T1 - Power exhaust in the snowflake divertor for L- and H-mode TCV tokamak plasmas
JF - Nuclear Fusion
Y1 - 2014
A1 - Vijvers, W. A. J.
A1 - G.P. Canal
A1 - Labit, B.
A1 - Reimerdes, H.
A1 - Tal, B.
A1 - Coda, S.
A1 - De Temmerman, G. C.
A1 - Duval, B. P.
A1 - Morgan, T. W.
A1 - Zielinski, J. J.
AB - The snowflake (SF) divertor is a plasma configuration that may enable tokamak operation at high performance and lower peak heat loads on the plasma-facing components than a standard single-null divertor. This paper reports on the results of experiments performed on the TCV tokamak in both the low- and high-confinement regimes, wherein the divertor configuration was continuously varied between a standard single-null and a 'SF-plus', which features auxiliary strike points (SPs) in the private flux region of the primary separatrix. The measured edge properties show that, in L-mode, the fraction of the exhaust power reaching the additional SPs is small. During edge-localized modes, up to similar to 20% of the exhausted energy is redistributed to the additional SPs even at an x-point separation of 0.6 times the plasma minor radius, thereby reducing the peak heat flux to the inner primary SP by a factor of 2-3. The observed behaviour is qualitatively consistent with a proposed model for enhanced cross-field transport through the SF's relatively large region of low poloidal field by instability-driven convection.
VL - 54
SN - 0029-5515; 1741-4326
U5 - fccb821f37595e9911845ba72c560d47
ER -
TY - JOUR
T1 - Development of real-time plasma analysis and control algorithms for the TCV tokamak using Simulink
JF - Fusion Engineering and Design
Y1 - 2014
A1 - Felici, F.
A1 - Le, H. B.
A1 - J. I. Paley
A1 - Duval, B. P.
A1 - Coda, S.
A1 - Moret, J. M.
A1 - Bortolon, A.
A1 - L. Federspiel
A1 - Goodman, T. P.
A1 - Hommen, G.
A1 - A. Karpushov
A1 - Piras, F.
A1 - A. Pitzschke
A1 - J. Romero
A1 - G. Sevillano
A1 - Sauter, O.
A1 - Vijvers, W.
A1 - TCV team
KW - diagnostics
KW - MHD control
KW - Plasma control
KW - Simulink
KW - TCV
KW - TOKAMAK
AB - One of the key features of the new digital plasma control system installed on the TCV tokamak is the possibility to rapidly design, test and deploy real-time algorithms. With this flexibility the new control system has been used for a large number of new experiments which exploit TCV's powerful actuators consisting of 16 individually controllable poloidal field coils and 7 real-time steerable electron cyclotron (EC) launchers. The system has been used for various applications, ranging from event-based real-time MHD control to real-time current diffusion simulations. These advances have propelled real-time control to one of the cornerstones of the TCV experimental program. Use of the Simulink graphical programming language to directly program the control system has greatly facilitated algorithm development and allowed a multitude of different algorithms to be deployed in a short time. This paper will give an overview of the developed algorithms and their application in physics experiments.
VL - 89
IS - 3
U1 - FP
U2 - TP
U5 - fd3e636fc3f0786cd773655181eb821f
ER -
TY - JOUR
T1 - Advanced divertor configurations with large flux expansion
JF - Journal of Nuclear Materials
Y1 - 2013
A1 - Soukhanovskii, V. A.
A1 - R.E. Bell
A1 - Diallo, A.
A1 - S. Gerhardt
A1 - S. Kaye
A1 - E. Kolemen
A1 - B.P. LeBlanc
A1 - McLean, A.
A1 - Menard, J. E.
A1 - S.F. Paul
A1 - Podesta, M.
A1 - Raman, R.
A1 - D.D. Ryutov
A1 - F. Scotti
A1 - Kaita, R.
A1 - Maingi, R.
A1 - D.M. Mueller
A1 - Roquemore, A. L.
A1 - Reimerdes, H.
A1 - G.P. Canal
A1 - Labit, B.
A1 - Vijvers, W.
A1 - Coda, S.
A1 - Duval, B. P.
A1 - Morgan, T.
A1 - Zielinski, J.
A1 - De Temmerman, G.
A1 - Tal, B.
AB - Experimental studies of the novel snowflake divertor concept (D. Ryutov, Phys. Plasmas 14 (2007) 064502) performed in the NSTX and TCV tokamaks are reviewed in this paper. The snowflake divertor enables power sharing between divertor strike points, as well as the divertor plasma-wetted area, effective connection length and divertor volumetric power loss to increase beyond those in the standard divertor, potentially reducing heat flux and plasma temperature at the target. It also enables higher magnetic shear inside the separatrix, potentially affecting pedestal MHD stability. Experimental results from NSTX and TCV confirm the predicted properties of the snowflake divertor. In the NSTX, a large spherical tokamak with a compact divertor and lithium-coated graphite plasma-facing components (PFCs), the snowflake divertor operation led to reduced core and pedestal impurity concentration, as well as re-appearance of Type I ELMs that were suppressed in standard divertor H-mode discharges. In the divertor, an otherwise inaccessible partial detachment of the outer strike point with an up to 50% increase in divertor radiation and a peak divertor heat flux reduction from 3–7 MW/m2 to 0.5–1 MW/m2 was achieved. Impulsive heat fluxes due to Type-I ELMs were significantly dissipated in the high magnetic flux expansion region. In the TCV, a medium-size tokamak with graphite PFCs, several advantageous snowflake divertor features (cf. the standard divertor) have been demonstrated: an unchanged L–H power threshold, enhanced stability of the peeling–ballooning modes in the pedestal region (and generally an extended second stability region), as well as an H-mode pedestal regime with reduced (×2–3) Type I ELM frequency and slightly increased (20–30%) normalized ELM energy, resulting in a favorable average energy loss comparison to the standard divertor. In the divertor, ELM power partitioning between snowflake divertor strike points was demonstrated. The NSTX and TCV experiments are providing support for the snowflake divertor as a viable solution for the outstanding tokamak plasma–material interface issues.
VL - 438, Supplement
UR - http://www.sciencedirect.com/science/article/pii/S0022311513000238
N1 - Proceedings of the 20th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices
U1 - PSI
U2 - PSI-E
U5 - 12367ceb1d7611691a25a587c02a11b8
ER -
TY - JOUR
T1 - Power distribution in the snowflake divertor in TCV
JF - Plasma Physics and Controlled Fusion
Y1 - 2013
A1 - Reimerdes, H.
A1 - G.P. Canal
A1 - Duval, B. P.
A1 - Labit, B.
A1 - Lunt, T.
A1 - Vijvers, W. A. J.
A1 - Coda, S.
A1 - De Temmerman, G.
A1 - Morgan, T. W.
A1 - Nespoli, F.
A1 - Tal, B.
A1 - TCV team
AB - TCV experiments demonstrate the basic power exhaust properties of the snowflake (SF) plus and SF minus divertor configurations by measuring the heat fluxes at each of their four divertor legs. The measurements indicate an enhanced transport into the private flux region and a reduction of peak heat fluxes compared to a similar single null configuration. There are indications that this enhanced transport cannot be explained by the modified field line geometry alone and likely requires an additional or enhanced cross-field transport channel. The measurements, however, do not show a broadening of the scrape-off layer (SOL) and, hence, no increased cross-field transport in the common flux region. The observations are consistent with the spatial limitation of several characteristic SF properties, such as a low poloidal magnetic field in the divertor region and a long connection length to the inner part of the SOL closest to the separatrix. Although this limitation is typical in a medium sized tokamak like TCV, it does not apply to significantly larger devices where the SF properties are enhanced across the entire expected extent of the SOL.
VL - 55
UR - http://stacks.iop.org/0741-3335/55/i=12/a=124027
U1 - PSI
U2 - PSI-E
U5 - 627abf62deb5ee08bf8456d666434d22
ER -
TY - JOUR
T1 - The physics of sawtooth stabilization
JF - Plasma Physics and Controlled Fusion
Y1 - 2007
A1 - Chapman, I.T.
A1 - Pinches, S. D.
A1 - Graves, J. P.
A1 - Akers, R. J.
A1 - Appel, L. C.
A1 - Budny, R. V.
A1 - Coda, S.
A1 - Conway, N. J.
A1 - De Bock, M.
A1 - Eriksson, L.-G.
A1 - Hastie, R. J.
A1 - Hender, T. C.
A1 - Huysmans, G. T. A.
A1 - Johnson, T.
A1 - Koslowski, H. R.
A1 - Kramer-Flecken, A.
A1 - Lennholm, M.
A1 - Liang, Y.
A1 - Saarelma, S.
A1 - Sharapov, S. E.
A1 - Voitsekhovitch, I.
A1 - the MAST and TEXTOR Teams and JET EFDA Contributors,
VL - 49
U1 - Fusion Physics
U2 - Instrumentation development
U5 - 0a2c50525dc1de60da5e572c4c965ace
ER -
TY - JOUR
T1 - On ion cyclotron current drive for sawtooth control
JF - Nuclear Fusion
Y1 - 2006
A1 - Eriksson, L. G.
A1 - Johnson, T.
A1 - Mayoral, M. L.
A1 - Coda, S.
A1 - Sauter, O.
A1 - Buttery, R. J.
A1 - McDonald, D.
A1 - Hellsten, T.
A1 - Mantsinen, M. J.
A1 - Mueck, A.
A1 - Noterdaeme, J. M.
A1 - Santala, M.
A1 - Westerhof, E.
A1 - P. de Vries
VL - 46
SN - 0029-5515
UR - ://000242004100012
N1 - Eriksson, L. -G. Johnson, T. Mayoral, M. -L. Coda, S. Sauter, O. Buttery, R. J. McDonald, D. Hellsten, T. Mantsinen, M. J. Mueck, A. Noterdaeme, J. -M. Santala, M. Westerhor, E. de Vries, P.
U1 - Fusion Physics
U2 - Instrumentation development
U5 - 6f190c1495f52fef9e69424944915ef3
ER -
TY - JOUR
T1 - Sawtooth control in fusion plasmas
JF - Plasma Physics and Controlled Fusion
Y1 - 2005
A1 - Graves, J. P.
A1 - Angioni, C.
A1 - Budny, R. V.
A1 - Buttery, R. J.
A1 - Coda, S.
A1 - Eriksson, L. G.
A1 - Gimblett, C. G.
A1 - Goodman, T. P.
A1 - Hastie, R. J.
A1 - Henderson, M. A.
A1 - Koslowski, H. R.
A1 - Mantsinen, M. J.
A1 - Martynov, A.
A1 - Mayoral, M. L.
A1 - Muck, A.
A1 - M F F Nave
A1 - Sauter, O.
A1 - Westerhof, E.
VL - 47
SN - 0741-3335
UR - ://000234420700012
N1 - Sp. Iss. SI Suppl. 12B
U1 - Fusion Physics
U2 - Tokamak physics
U5 - aa899bbe0c90c898625e8e686956f47c
ER -
TY - JOUR
T1 - Destabilization of fast-ion-induced long sawteeth by localized current drive in the JET tokamak
JF - Physical Review Letters
Y1 - 2004
A1 - Eriksson, L. G.
A1 - Mueck, A.
A1 - Sauter, O.
A1 - Coda, S.
A1 - Mantsinen, M. J.
A1 - Mayoral, M. L.
A1 - Westerhof, E.
A1 - Buttery, R. J.
A1 - McDonald, D.
A1 - Johnson, T.
A1 - Noterdaeme, J. M.
A1 - P. de Vries
VL - 92
SN - 0031-9007
UR - ://000221961900023
U1 - Fusion Physics
U2 - Tokamak physics
U5 - 08a9a06eb543052664971e31ccd1bcb6
ER -
TY - JOUR
T1 - Overview of JET results
JF - Nuclear Fusion
Y1 - 2003
A1 - Pamela, J.
A1 - Solano, E. R.
A1 - Adams, J. M.
A1 - Agarici, G.
A1 - Agarici, M.
A1 - Akhter, H.
A1 - Albanese, R.
A1 - Alberti, S.
A1 - Allfrey, S.
A1 - Alper, B.
A1 - Alves, D.
A1 - Amarante, J.
A1 - van Amerongen, F.
A1 - Andrew, P.
A1 - Andrew, Y.
A1 - Ane, J. M.
A1 - Angioni, C.
A1 - Antonucci, C.
A1 - Ambrosino, G.
A1 - Apruzzese, G.
A1 - Ariola, M.
A1 - Artaserse, G.
A1 - Artaud, J. F.
A1 - Ascasibar, E.
A1 - Asp, E.
A1 - Axton, M.
A1 - Baciero, A.
A1 - Badarelli, M.
A1 - Baity, W.
A1 - Balbin, R.
A1 - Balme, S.
A1 - Barana, O.
A1 - Baranov, Y.
A1 - Barbato, E.
A1 - Barnsley, R.
A1 - Basiuk, V.
A1 - Bateman, G.
A1 - Baumel, S.
A1 - Bayetti, P.
A1 - Baylor, L.
A1 - Beaumont, B.
A1 - Beaumont, P.
A1 - Becoulet, A.
A1 - Becoulet, M.
A1 - Bekris, M.
A1 - Beldishevski, M.
A1 - Bell, A. C.
A1 - Bennet, P.
A1 - Berger-By, G.
A1 - Berk, H. L.
A1 - Bernabei, S.
A1 - Bertalot, L.
A1 - Bertrand, B.
A1 - Beurskens, M.
A1 - Bibet, P.
A1 - Bickley, A.
A1 - Bigi, M.
A1 - Bilato, R.
A1 - Blackman, T.
A1 - Blanchard, P.
A1 - Blum, J.
A1 - Bolzonella, T.
A1 - Bondeson, A.
A1 - Bongers, W.
A1 - Bonheure, G.
A1 - Bonnin, X.
A1 - Borass, K.
A1 - Borba, D.
A1 - Bosak, K.
A1 - Bosia, P.
A1 - Boyer, H.
A1 - Bracco, G.
A1 - Braithwaite, G. C.
A1 - Breizman, B. N.
A1 - Bremond, S.
A1 - Brennan, P. D.
A1 - Bresslau, J.
A1 - Brezinsek, S.
A1 - Brichero, B.
A1 - Briscoe, F.
A1 - Brix, M.
A1 - Brolatti, G.
A1 - Brown, D. P. D.
A1 - Bruggeman, A.
A1 - Bruschi, A.
A1 - Bryan, S.
A1 - Brzozowski, J.
A1 - Bucalossi, J.
A1 - Buceti, G.
A1 - Buckley, M. A.
A1 - Budd, T.
A1 - Budny, R.
A1 - Buratti, P.
A1 - Butcher, P.
A1 - Buttery, R. J.
A1 - Calabro, G.
A1 - Nichols, C. J. C.
A1 - Callen, J.
A1 - Campbell, D.
A1 - Campling, D. C.
A1 - Cannas, B.
A1 - Capel, A. J.
A1 - Card, P. J.
A1 - Carlstrom, T.
A1 - Castaldo, C.
A1 - Causey, R.
A1 - Cecil, F. E.
A1 - Cesario, R.
A1 - Challis, C.
A1 - Chan, V.
A1 - Chappuis, P.
A1 - Charlet, M.
A1 - Charreau, J. M.
A1 - Cheron, C.
A1 - Child, D.
A1 - Chitarin, G.
A1 - Ciattaglia, S.
A1 - Cirant, S.
A1 - Ciric, D.
A1 - Clarke, R.
A1 - Coad, J. P.
A1 - Coates, P.
A1 - Coccorese, V.
A1 - Cocilovo, V.
A1 - Coda, S.
A1 - Coelho, R.
A1 - Coffey, I.
A1 - Coletti, A.
A1 - Collins, S.
A1 - Conboy, J.
A1 - Conroy, S.
A1 - Conway, G.
A1 - Cooper, S. R.
A1 - Cordey, G.
A1 - Corre, Y.
A1 - Corrigan, G.
A1 - Cortes, S.
A1 - Coster, D.
A1 - Counsell, G. F.
A1 - Cox, M.
A1 - Cox, S. J.
A1 - Cramp, S.
A1 - Crescenzi, C.
A1 - Crisanti, F.
A1 - Cristescu, I.
A1 - Cristescu, I. R.
A1 - Crowley, B.
A1 - Cruz, N.
A1 - Cupido, L.
A1 - Cusack, R.
A1 - Belo, P. D. A.
A1 - Dailey, S.
A1 - Daly, E.
A1 - Damiani, C.
A1 - Darrow, D.
A1 - David, O.
A1 - Davies, N.
A1 - Day, C.
A1 - De Angelis, R.
A1 - de M. Baar
A1 - De Barbieri, O.
A1 - De Benedetti, M.
A1 - DeGrassie, J.
A1 - de la Luna, E.
A1 - P. de Vries
A1 - Degli Agostini, F.
A1 - Dentan, M.
A1 - Dimits, A.
A1 - Dines, A.
A1 - Dobbing, J. A.
A1 - Doceul, L.
A1 - Doncel, J.
A1 - Donné, A.
A1 - Donne, T.
A1 - Dorland, W.
A1 - Dorling, S. E.
A1 - Doyle, P.
A1 - Drozdov, V.
A1 - Dumbrajs, O.
A1 - Dumortier, P.
A1 - Durocher, A.
A1 - Durodie, F.
A1 - Duval, B.
A1 - Dux, R.
A1 - Edlington, T.
A1 - Edwards, A. M.
A1 - Edwards, D. C.
A1 - Edwards, D. T.
A1 - Edwards, P.
A1 - Eich, T.
A1 - Ekedahl, A.
A1 - Elbeze, D.
A1 - Ellingboe, A. R.
A1 - Ellis, R.
A1 - Elsmore, C. G.
A1 - Elzendoorn, B. S. Q.
A1 - Erents, S.K.
A1 - Ericsson, G.
A1 - Eriksson, L.
A1 - Esposito, B.
A1 - Esser, H. G.
A1 - Estrada, T.
A1 - Evrard, M.
A1 - Ewart, C.
A1 - Fanthome, J.
A1 - Farthing, J. W.
A1 - Fasel, D.
A1 - Fasoli, A.
A1 - Felton, R.
A1 - Fenstermacher, M.
A1 - Fenzi, C.
A1 - Fernandes, H.
A1 - Fernandez, A.
A1 - Ferreira, J.
A1 - Fessey, J. A.
A1 - Figueiredo, A.
A1 - Finburg, P.
A1 - Fink, J.
A1 - Finken, K.H.
A1 - Fiorentin, P.
A1 - Fischer, U.
A1 - Fleming, C.
A1 - Forrest, R.
A1 - Fourment, C.
A1 - Franel, B.
A1 - Franzen, P.
A1 - Fredian, T.
A1 - Fricconneeu, J. P.
A1 - Frigione, D.
A1 - Fu, G.
A1 - Fuchs, J. C.
A1 - Fullard, K.
A1 - Fundamenski, W.
A1 - Gabriel, F.
A1 - Gaffert, J.
A1 - Galutschek, E.
A1 - Gans, T.
A1 - Garbet, X.
A1 - Cortes, I. G.
A1 - Garzotti, L.
A1 - Gauthier, E.
A1 - Gedney, J.
A1 - Geier, A.
A1 - Gentile, C.
A1 - Gerasimov, S.
A1 - Geraud, A.
A1 - Ghendrih, P.
A1 - Giannella, R.
A1 - Gill, R. D.
A1 - Gimblett, C.
A1 - Giovannozzi, E.
A1 - Giroud, C.
A1 - Goff, J.
A1 - Gohil, P.
A1 - Gondhalekar, A.
A1 - Goniche, M.
A1 - Goodyear, A.
A1 - Gorelenkov, N.
A1 - Gorini, G.
A1 - Goulding, R.
A1 - Gowers, C. W.
A1 - Graham, M. E.
A1 - Grando, L.
A1 - Granucci, G.
A1 - Graswinckel, M.
A1 - Green, N.
A1 - Greenfield, C.
A1 - Greenough, N.
A1 - Greenwald, M.
A1 - Gregoratto, D.
A1 - Griph, F. S.
A1 - Grisolia, C.
A1 - Grosman, A.
A1 - Grosso, G.
A1 - Gruenhagen, S.
A1 - Gude, A.
A1 - Guenter, S.
A1 - Guenther, K.
A1 - Guerin, C.
A1 - Gugla, M.
A1 - Guigon, A.
A1 - Guirlet, R.
A1 - Gunn, J.
A1 - Haas, G.
A1 - Hackett, L.
A1 - Hacquin, S.
A1 - Hahm, T. S.
A1 - Haist, B.
A1 - Cook, S. H.
A1 - Hamilton, D.
A1 - Hammett, G.
A1 - Handley, R.
A1 - Harling, J. D. W.
A1 - Harrison, J.
A1 - Hartmann, D.
A1 - Haupt, T.
A1 - Hawkes, N. C.
A1 - Hay, J.
A1 - Hayward, I.
A1 - Hedin, J.
A1 - Heesterman, P.
A1 - Heikkinen, J.
A1 - Heinemann, B.
A1 - Helander, P.
A1 - Hellingman, P.
A1 - Hellsten, T.
A1 - Hemming, O. N.
A1 - Hemsworth, R.
A1 - Hender, T. C.
A1 - Henderson, M.
A1 - Hennequin, P.
A1 - Henshaw, A.
A1 - Herrmann, A.
A1 - Hidalgo, C.
A1 - Hill, J.
A1 - Hillis, D.
A1 - Hitchin, M.
A1 - Hoang, T.
A1 - Hobirk, J.
A1 - Hoekzema, F.
A1 - Hoekzema, J. A.
A1 - Hofmann, E.
A1 - Hogan, C.
A1 - Hogben, C.
A1 - Hogeweij, D.
A1 - Homfray, D.
A1 - Horton, A.
A1 - Horton, L. D.
A1 - Hosea, J.
A1 - Hoskins, A. J.
A1 - Hotchin, S.
A1 - Hough, M. R.
A1 - Houlberg, W.
A1 - How, J.
A1 - Howell, D.
A1 - Hron, M.
A1 - Hubbard, A.
A1 - Huber, A.
A1 - Hudson, Z.
A1 - Hume, H.
A1 - Humphries, D.
A1 - Hurd, F.
A1 - Hutchinson, I.
A1 - Hutter, T.
A1 - Huygen, S.
A1 - Huysmans, G.
A1 - Imbeaux, F.
A1 - Ingesson, C.
A1 - Innocente, P.
A1 - Jachmich, S.
A1 - Jackson, G.
A1 - Jardin, S.
A1 - Jarmen, A.
A1 - Jarvis, O. N.
A1 - R. Jaspers
A1 - Jaun, A.
A1 - Jenkins, I.
A1 - Jensen, H. S.
A1 - Joffrin, E.
A1 - Johnson, M. F.
A1 - Johnson, R.
A1 - Jones, E. M.
A1 - Jones, G.
A1 - Jones, H. D.
A1 - Jones, T.
A1 - Jonsson, T.
A1 - Jupen, C.
A1 - Kallenbach, A.
A1 - Kallne, J.
A1 - Karttunen, S.
A1 - Kasparek, W.
A1 - Kaye, A.
A1 - Keeling, D.
A1 - Kelliher, D.
A1 - Kemp, N.
A1 - King, R. F.
A1 - Kinsey, J.
A1 - Kiptily, V.
A1 - Kirov, K.
A1 - Kirschner, A.
A1 - Kiviniemi, T.
A1 - Knight, P.
A1 - Knipe, S.
A1 - Koch, R.
A1 - Kooijman, W.
A1 - Korotkov, A.
A1 - Koslowski, H. R.
A1 - Kramer, G.
A1 - Kraus, W.
A1 - Kritz, A.
A1 - Kruijt, O. G.
A1 - Kurki-Suonio, T.
A1 - La Haye, R. J.
A1 - Labombard, B.
A1 - Laesser, R.
A1 - Lam, N.
A1 - Lamalle, P.
A1 - Land, G.
A1 - Lang, P.
A1 - Lao, L.
A1 - Last, J.
A1 - Laux, M.
A1 - Laviron, C.
A1 - Lawson, K. D.
A1 - Laxaback, M.
A1 - Lazzaro, E.
A1 - Leggate, H.
A1 - Lehnen, M.
A1 - Leigheb, M.
A1 - Lennholm, M.
A1 - Leonard, A.
A1 - Lescure, C.
A1 - Leuterer, F.
A1 - Likin, K.
A1 - X. Litaudon
A1 - Lingier, K.
A1 - Linke, J.
A1 - Lipshultz, B.
A1 - Lister, J.
A1 - Liu, Y.
A1 - Lloyd, G.
A1 - Loarer, T.
A1 - Loarte, A.
A1 - Loesser, D.
A1 - Lomas, P. J.
A1 - Long, F.
A1 - Lonnroth, J.
A1 - Lorenz, A.
A1 - Lotte, P.
A1 - Louche, F.
A1 - Loughlin, M.
A1 - Loving, A.
A1 - Luce, T.
A1 - Lucock, R. M. A.
A1 - Lyssoivan, A.
A1 - Maagdenberg, J.
A1 - Maas, A.
A1 - MacGregor, J.
A1 - Macheta, P.
A1 - Maddaluno, G.
A1 - G. P. Maddison
A1 - Maget, P.
A1 - Magne, R.
A1 - Mahdavi, A.
A1 - J. Mailloux
A1 - Maisonnier, D.
A1 - Manickam, J.
A1 - Mank, G.
A1 - Manso, M. E.
A1 - Mantica, P.
A1 - Mantsinen, M.
A1 - Maraschek, M.
A1 - Marcuzzi, D.
A1 - Marinucci, M.
A1 - Marmillod, P.
A1 - Martin, D.
A1 - Martin, M.
A1 - Martin, Y.
A1 - Mast, K. F.
A1 - Mattei, M.
A1 - Matthews, G. F.
A1 - Mayer, M.
A1 - Mayoral, M. L.
A1 - Mazon, D.
A1 - Mazzone, G.
A1 - Mazzucato, E.
A1 - McCarron, E.
A1 - McClements, K.
A1 - McCormick, K.
A1 - McCullen, P. A.
A1 - McCune, D.
A1 - McDonald, D.
A1 - Mead, M.
A1 - Medina, F.
A1 - Meigs, A.
A1 - Melissen, W.
A1 - Meneses, L.
A1 - Meo, F.
A1 - Mertens, P.
A1 - Mertens, V.
A1 - Messiaen, A.
A1 - Milani, F.
A1 - Miller, A.
A1 - Mills, S.
A1 - Milner, J.
A1 - Mlynar, J.
A1 - Monakhov, I.
A1 - Monier-Garbet, P.
A1 - Monk, R.
A1 - Monney, R.
A1 - Moreau, D.
A1 - Moreau, P.
A1 - Morgan, P. D.
A1 - Morris, A. W.
A1 - Morris, J.
A1 - Mort, J. L.
A1 - Mossessian, D.
A1 - Muck, A.
A1 - Mueller, G.
A1 - Murakami, M.
A1 - Murari, A.
A1 - Murdock, D.
A1 - Na, Y. S.
A1 - Nabais, F.
A1 - M F F Nave
A1 - Nazikian, R.
A1 - Negus, C.
A1 - Neil, G. F.
A1 - Neilson, J. D.
A1 - Nelson, B.
A1 - Neu, R.
A1 - Nevins, W.
A1 - Newbert, G. J.
A1 - Nguyen, F.
A1 - Nichols, K.
A1 - Nicolai, A.
A1 - Nicolas, L.
A1 - Nielsen, P.
A1 - Nightingale, M.
A1 - Nordman, H.
A1 - Noterdaeme, J. M.
A1 - Nowak, S.
A1 - O'Mullane, M.
A1 - Ongena, J.
A1 - Onjun, T.
A1 - Orchard, J.
A1 - Orsitto, F.
A1 - Osborne, T.
A1 - Palmer, J.
A1 - Panaccione, L.
A1 - Parail, V.
A1 - Parkin, A.
A1 - Parsons, B.
A1 - Pascualotto, R.
A1 - Patel, B.
A1 - Pavlenko, I.
A1 - Peacock, A. T.
A1 - Pearce, R.
A1 - Pecquet, A. L.
A1 - Luna, A. P.
A1 - Peeters, A.
A1 - Penzhorn, R. D.
A1 - Alonso, M. P.
A1 - Pereverzev, G.
A1 - Perevezentsev, A.
A1 - von Thun, C. P.
A1 - Pericoli, V.
A1 - Peruzzo, S.
A1 - Petravich, G.
A1 - Petrizilka, V.
A1 - Petrov, Y.
A1 - Petty, C.
A1 - Phillips, V.
A1 - Piccolo, F.
A1 - Pick, M.
A1 - Pinches, S. D.
A1 - Pinna, T.
A1 - Piosczyk, B.
A1 - Pironti, A.
A1 - Pitcher, C. S.
A1 - Pitts, R.
A1 - Plysnin, V.
A1 - Pochelon, A.
A1 - Podda, S.
A1 - Polinari, P.
A1 - Pomaro, N.
A1 - Popovichev, S.
A1 - Portafaix, C.
A1 - Porter, G.
A1 - Pospieszczyk, A.
A1 - Preece, G.
A1 - Prentice, R.
A1 - Prins, R.
A1 - Proschek, M.
A1 - Pugno, R.
A1 - M. E. Puiatti
A1 - Purahoo, K.
A1 - Rachlew, E.
A1 - Rainford, M.
A1 - Raisback, D.
A1 - Rantamaki, K.
A1 - Rapp, J.
A1 - Rasmussen, D.
A1 - Reiser, D.
A1 - Reiter, D.
A1 - Rewoldt, G.
A1 - Ribeiro, T. M.
A1 - Riccardo, V.
A1 - Righi, E.
A1 - Rimini, F. G.
A1 - Riva, M.
A1 - Robinson, D. S.
A1 - Robinson, S. A.
A1 - Robson, D. W.
A1 - Roccella, M.
A1 - Rodrigo, L. R.
A1 - Rogero, G.
A1 - Rogister, A.
A1 - Roguemore, T.
A1 - Rolfe, A.
A1 - Ronden, D.
A1 - Rosanvallon, S.
A1 - Ross, D.
A1 - Rubel, M.
A1 - Ryter, F.
A1 - Saarelma, S.
A1 - Sabathier, F.
A1 - Sabot, R.
A1 - Saibene, G.
A1 - Salavy, J. F.
A1 - Sall, I.
A1 - Sanchez, J.
A1 - Sanders, S.
A1 - Sanders, S. G.
A1 - Sands, D.
A1 - Sarazin, Y.
A1 - Sartori, F.
A1 - Sartori, R.
A1 - Sattin, F.
A1 - Sauter, O.
A1 - Sborchia, C.
A1 - Scaffidi-Argentina, F.
A1 - Scarabosio, A.
A1 - Schilling, G.
A1 - Schissel, D.
A1 - Schlosser, J.
A1 - Schmidt, G.
A1 - Schmidt, W.
A1 - Schuller, C.
A1 - Schweer, B.
A1 - Schweinzer, J.
A1 - Segui, J. L.
A1 - Semeraro, L.
A1 - Sergienko, G.
A1 - Serra, F.
A1 - Sharapov, S. E.
A1 - Shaw, S. R.
A1 - Siegrist, M.
A1 - Silva, C. A.
A1 - Simpson, D.
A1 - Sipila, S.
A1 - Sips, A.C.C.
A1 - Sjostrand, H.
A1 - Skinner, C.
A1 - Smith, P. G.
A1 - Snipes, J.
A1 - Sonato, P.
A1 - Sousa, J.
A1 - Sozzi, C.
A1 - Spence, J.
A1 - Speth, E.
A1 - Staebler, A.
A1 - Allen, R. S.
A1 - Stagg, R.
A1 - Stakenborg, J.
A1 - Stamp, M. F.
A1 - Stangeby, P.
A1 - Starkey, D.
A1 - Stauton-Lambert, S. A.
A1 - Stephen, A.
A1 - Sterk, A.
A1 - Sterk, A. B.
A1 - Stevens, A.
A1 - Stillerman, J.
A1 - Stober, J.
A1 - Stokes, R.
A1 - Stork, D.
A1 - Strachan, J.
A1 - Stratton, B.
A1 - Stratton, K.
A1 - Stubberfield, P.
A1 - Summers, H. P.
A1 - Surrey, E.
A1 - Sutton, D.
A1 - Suttrop, W.
A1 - Svenson, J.
A1 - Symonds, I.
A1 - Tabares, F.
A1 - Tait, J.
A1 - Tala, T.
A1 - Talarico, C.
A1 - Talbot, A. R.
A1 - Taliercio, C.
A1 - Tam, U.
A1 - Tame, C.
A1 - Tardini, G.
A1 - Tardocchi, M.
A1 - Tartoni, N.
A1 - Tavernier, J.
A1 - Telesca, G.
A1 - Terrington, A. O.
A1 - Testa, D.
A1 - Testoni, P.
A1 - Theis, J. M.
A1 - Thomas, J.
A1 - Thomas, P.
A1 - Thomsen, H.
A1 - Thomsen, K.
A1 - Thumm, M.
A1 - Thyagaraja, C.
A1 - Tichler, J.
A1 - Tigwell, P.
A1 - Tiscornia, T.
A1 - Todd, J. M.
A1 - Tokar, M. Z.
A1 - De Tommasi, G.
A1 - Tran, Q. M.
A1 - Travere, J. M.
A1 - Tresset, G.
A1 - Tribaldos, V.
A1 - Tsitrone, E.
A1 - Tuccillo, A. A.
A1 - Tudisco, O.
A1 - Turker, E.
A1 - Turner, M. M.
A1 - Udintsev, V.
A1 - Unterberg, B.
A1 - Valetta, M. P.
A1 - Valisa, M.
A1 - Valovic, M.
A1 - van Amerongen, F.
A1 - Van de Poll, M.
A1 - Van der Grift, T.
A1 - Van Eester, D.
A1 - Van Gorkorm, J.
A1 - Varela, P.
A1 - Vender, D.
A1 - Veres, G.
A1 - Verhoeven, A.
A1 - Villard, L.
A1 - Villedieu, E.
A1 - Villone, F.
A1 - Vince, J. E.
A1 - von Hellermann, M.
A1 - Vulliez, K.
A1 - Wade, M.
A1 - Wagner, D.
A1 - Walden, A.
A1 - Walker, M.
A1 - Walton, B.
A1 - Watkins, M. L.
A1 - Watson, M. J.
A1 - Weiland, J.
A1 - Weisen, H.
A1 - Werner, A.
A1 - Wesner, F.
A1 - West, P.
A1 - Westerhof, E.
A1 - Weyssow, B.
A1 - Wheatley, M. R.
A1 - Whitehead, A.
A1 - Whitehurst, A.
A1 - Whyte, D.
A1 - Wicks, S. J.
A1 - Widdershoven, L.
A1 - Wienhold, P.
A1 - Wilson, A.
A1 - Wilson, C.
A1 - Wilson, D.
A1 - Wilson, D. J.
A1 - Wilson, D. W.
A1 - Wilson, R.
A1 - Wischmeier, M.
A1 - Wolf, R.
A1 - Wouters, P.
A1 - Yorkshades, J. S.
A1 - Young, C.
A1 - Young, D.
A1 - Young, I. D.
A1 - Young, K.
A1 - Zabeo, L.
A1 - Zacek, F.
A1 - Zakharov, L.
A1 - Zanca, P.
A1 - Zastrow, K. D.
A1 - Zeidner, W.
A1 - Zerbini, M.
A1 - Zohm, H.
A1 - Zoletnik, S.
A1 - Zonca, F.
A1 - Zwingman, W.
VL - 43
SN - 0029-5515
UR - ://000187838300003
U1 - Fusion Physics
U2 - Tokamak physics
U5 - dfd7c655e42dd11870332464062d763b
ER -