TY - JOUR
T1 - Chapter 3: MHD stability, operational limits and disruptions
JF - Nuclear Fusion
Y1 - 2007
A1 - Hender, T. C.
A1 - Wesley, J. C.
A1 - Bialek, J.
A1 - Bondeson, A.
A1 - Boozer, A. H.
A1 - Buttery, R. J.
A1 - Garofalo, A.
A1 - Goodman, T. P.
A1 - Granetz, R. S.
A1 - Gribov, Y.
A1 - Gruber, O.
A1 - Gryaznevich, M.
A1 - Giruzzi, G.
A1 - Gunter, S.
A1 - Hayashi, N.
A1 - Helander, P.
A1 - Hegna, C. C.
A1 - Howell, D. F.
A1 - Humphreys, D. A.
A1 - Huysmans, G. T. A.
A1 - Hyatt, A. W.
A1 - Isayama, A.
A1 - Jardin, S. C.
A1 - Kawano, Y.
A1 - Kellman, A.
A1 - Kessel, C.
A1 - Koslowski, H. R.
A1 - La Haye, R. J.
A1 - Lazzaro, E.
A1 - Liu, Y. Q.
A1 - Lukash, V.
A1 - Manickam, J.
A1 - Medvedev, S.
A1 - Mertens, V.
A1 - Mirnov, S. V.
A1 - Nakamura, Y.
A1 - Navratil, G.
A1 - Okabayashi, M.
A1 - Ozeki, T.
A1 - Paccagnella, R.
A1 - Pautasso, G.
A1 - Porcelli, F.
A1 - Pustovitov, V. D.
A1 - Riccardo, V.
A1 - Sato, M.
A1 - Sauter, O.
A1 - Schaffer, M. J.
A1 - Shimada, M.
A1 - Sonato, P.
A1 - Strait, E. J.
A1 - Sugihara, M.
A1 - Takechi, M.
A1 - Turnbull, A. D.
A1 - Westerhof, E.
A1 - Whyte, D. G.
A1 - Yoshino, R.
A1 - Zohm, H.
VL - 47
SN - 0029-5515
UR - ://000247899900004
N1 - Hender, T. C. Wesley, J. C. Bialek, J. Bondeson, A. Boozer, A. H. Buttery, R. J. Garofalo, A. Goodman, T. P. Granetz, R. S. Gribov, Y. Gruber, O. Gryaznevich, M. Giruzzi, G. Guenter, S. Hayashi, N. Helander, P. Hegna, C. C. Howell, D. F. Humphreys, D. A. Huysmans, G. T. A. Hyatt, A. W. Isayama, A. Jardin, S. C. Kawano, Y. Kellman, A. Kessel, C. Koslowski, H. R. La Haye, R. J. Lazzaro, E. Liu, Y. Q. Lukash, V. Manickam, J. Medvedev, S. Mertens, V. Mirnov, S. V. Nakamura, Y. Navratil, G. Okabayashi, M. Ozeki, T. Paccagnella, R. Pautasso, G. Porcelli, F. Pustovitov, V. D. Riccardo, V. Sato, M. Sauter, O. Schaffer, M. J. Shimada, M. Sonato, P. Strait, E. J. Sugihara, M. Takechi, M. Turnbull, A. D. Westerhof, E. Whyte, D. G. Yoshino, R. Zohm, H.Sp. Iss. SI
U1 - Fusion Physics
U2 - Tokamak physics
U5 - e5e8e4f862e110704934d9c3e0707a8e
ER -
TY - JOUR
T1 - Stability of Global Alfven Waves (Tae, Eae) in Jet Tritium Discharges
JF - Plasma Physics and Controlled Fusion
Y1 - 1994
A1 - Kerner, W.
A1 - Borba, D.
A1 - Huysmans, G. T. A.
A1 - Porcelli, F.
A1 - Poedts, S.
A1 - Goedbloed, J. P.
A1 - Betti, R.
AB - The interaction of alpha-particles in JET tritium discharges with global Alfven waves via inverse Landau damping is analysed. It is found that alpha-particle driven eigenmodes were stable in the PTE1 and should also be stable in a future 50:50 deuterium-tritium mix discharge aiming at Q(DT) = 1, provided the same ion density as in the discharges with the best deuterium-deuterium performance is maintained.
VL - 36
SN - 0741-3335
U5 - b7cd33874307fbb1d3893160287dc2bf
ER -
TY - JOUR
T1 - Fusion Energy-Production from a Deuterium-Tritium Plasma in the Jet Tokamak
JF - Nuclear Fusion
Y1 - 1992
A1 - Rebut, P. H.
A1 - Gibson, A.
A1 - Huguet, M.
A1 - Adams, J. M.
A1 - Alper, B.
A1 - Altmann, H.
A1 - Andersen, A.
A1 - Andrew, P.
A1 - Angelone, M.
A1 - Aliarshad, S.
A1 - Baigger, P.
A1 - Bailey, W.
A1 - Balet, B.
A1 - Barabaschi, P.
A1 - Barker, P.
A1 - Barnsley, R.
A1 - Baronian, M.
A1 - Bartlett, D. V.
A1 - Baylor, L.
A1 - Bell, A. C.
A1 - Benali, G.
A1 - Bertoldi, P.
A1 - Bertolini, E.
A1 - Bhatnagar, V.
A1 - Bickley, A. J.
A1 - Binder, D.
A1 - Bindslev, H.
A1 - Bonicelli, T.
A1 - Booth, S. J.
A1 - Bosia, G.
A1 - Botman, M.
A1 - Boucher, D.
A1 - Boucquey, P.
A1 - Breger, P.
A1 - Brelen, H.
A1 - Brinkschulte, H.
A1 - Brooks, D.
A1 - Brown, A.
A1 - Brown, T.
A1 - Brusati, M.
A1 - Bryan, S.
A1 - Brzozowski, J.
A1 - Buchse, R.
A1 - Budd, T.
A1 - Bures, M.
A1 - Businaro, T.
A1 - Butcher, P.
A1 - Buttgereit, H.
A1 - Caldwellnichols, C.
A1 - Campbell, D. J.
A1 - Card, P.
A1 - Celentano, G.
A1 - Challis, C. D.
A1 - Chankin, A. V.
A1 - Cherubini, A.
A1 - Chiron, D.
A1 - Christiansen, J.
A1 - Chuilon, P.
A1 - Claesen, R.
A1 - Clement, S.
A1 - Clipsham, E.
A1 - Coad, J. P.
A1 - Coffey, I. H.
A1 - Colton, A.
A1 - Comiskey, M.
A1 - Conroy, S.
A1 - Cooke, M.
A1 - Cooper, D.
A1 - Cooper, S.
A1 - Cordey, J. G.
A1 - Core, W.
A1 - Corrigan, G.
A1 - Corti, S.
A1 - Costley, A. E.
A1 - Cottrell, G.
A1 - Cox, M.
A1 - Cripwell, P.
A1 - Dacosta, O.
A1 - Davies, J.
A1 - Davies, N.
A1 - de Blank, H.
A1 - De Esch, H.
A1 - Dekock, L.
A1 - Deksnis, E.
A1 - Delvart, F.
A1 - Dennehinnov, G. B.
A1 - Deschamps, G.
A1 - Dickson, W. J.
A1 - Dietz, K. J.
A1 - Dmitrenko, S. L.
A1 - Dmitrieva, M.
A1 - Dobbing, J.
A1 - Doglio, A.
A1 - Dolgetta, N.
A1 - Dorling, S. E.
A1 - Doyle, P. G.
A1 - Duchs, D. F.
A1 - Duquenoy, H.
A1 - Edwards, A.
A1 - Ehrenberg, J.
A1 - Ekedahl, A.
A1 - Elevant, T.
A1 - Erents, S.K.
A1 - Eriksson, L. G.
A1 - Fajemirokun, H.
A1 - Falter, H.
A1 - Freiling, J.
A1 - Freville, F.
A1 - Froger, C.
A1 - Froissard, P.
A1 - Fullard, K.
A1 - Gadeberg, M.
A1 - Galetsas, A.
A1 - Gallagher, T.
A1 - Gambier, D.
A1 - Garribba, M.
A1 - Gaze, P.
A1 - Giannella, R.
A1 - Gill, R. D.
A1 - Girard, A.
A1 - Gondhalekar, A.
A1 - Goodall, D.
A1 - Gormezano, C.
A1 - Gottardi, N. A.
A1 - Gowers, C.
A1 - Green, B. J.
A1 - Grievson, B.
A1 - Haange, R.
A1 - Haigh, A.
A1 - Hancock, C. J.
A1 - Harbour, P. J.
A1 - Hartrampf, T.
A1 - Hawkes, N. C.
A1 - Haynes, P.
A1 - Hemmerich, J. L.
A1 - Hender, T.
A1 - Hoekzema, J.
A1 - Holland, D.
A1 - Hone, M.
A1 - Horton, L.
A1 - How, J.
A1 - Huart, M.
A1 - Hughes, I.
A1 - Hughes, T. P.
A1 - Hugon, M.
A1 - Huo, Y.
A1 - Ida, K.
A1 - Ingram, B.
A1 - Irving, M.
A1 - Jacquinot, J.
A1 - Jaeckel, H.
A1 - Jaeger, J. F.
A1 - Janeschitz, G.
A1 - Jankovicz, Z.
A1 - Jarvis, O. N.
A1 - Jensen, F.
A1 - Jones, E. M.
A1 - Jones, H. D.
A1 - Jones, Lpdf
A1 - Jones, S.
A1 - Jones, T. T. C.
A1 - Junger, J. F.
A1 - Junique, F.
A1 - Kaye, A.
A1 - Keen, B. E.
A1 - Keilhacker, M.
A1 - Kelly, G. J.
A1 - Kerner, W.
A1 - Khudoleev, A.
A1 - Konig, R.
A1 - Konstantellos, A.
A1 - Kovanen, M.
A1 - Kramer, G.
A1 - Kupschus, P.
A1 - Lasser, R.
A1 - Last, J. R.
A1 - Laundy, B.
A1 - Laurotaroni, L.
A1 - Laveyry, M.
A1 - Lawson, K.
A1 - Lennholm, M.
A1 - Lingertat, J.
A1 - Litunovski, R. N.
A1 - Loarte, A.
A1 - Lobel, R.
A1 - Lomas, P.
A1 - Loughlin, M.
A1 - Lowry, C.
A1 - Lupo, J.
A1 - Maas, A. C.
A1 - Machuzak, J.
A1 - Macklin, B.
A1 - Maddison, G.
A1 - Maggi, C. F.
A1 - Magyar, G.
A1 - Mandl, W.
A1 - Marchese, V.
A1 - Marcon, G.
A1 - Marcus, F.
A1 - Mart, J.
A1 - Martin, D.
A1 - Martin, E.
A1 - Martinsolis, R.
A1 - Massmann, P.
A1 - Matthews, G.
A1 - McBryan, H.
A1 - McCracken, G.
A1 - McKivitt, J.
A1 - Meriguet, P.
A1 - Miele, P.
A1 - Miller, A.
A1 - Mills, J.
A1 - Mills, S. F.
A1 - Millward, P.
A1 - Milverton, P.
A1 - Minardi, E.
A1 - Mohanti, R.
A1 - Mondino, P. L.
A1 - Montgomery, D.
A1 - Montvai, A.
A1 - Morgan, P.
A1 - Morsi, H.
A1 - Muir, D.
A1 - Murphy, G.
A1 - Myrnas, R.
A1 - Nave, F.
A1 - Newbert, G.
A1 - Newman, M.
A1 - Nielsen, P.
A1 - Noll, P.
A1 - Obert, W.
A1 - Obrien, D.
A1 - Orchard, J.
A1 - Orourke, J.
A1 - Ostrom, R.
A1 - Ottaviani, M.
A1 - Pain, M.
A1 - Paoletti, F.
A1 - Papastergiou, S.
A1 - Parsons, W.
A1 - Pasini, D.
A1 - Patel, D.
A1 - Peacock, A.
A1 - Peacock, N.
A1 - Pearce, R. J. M.
A1 - Pearson, D.
A1 - Peng, J. F.
A1 - Desilva, R. P.
A1 - Perinic, G.
A1 - Perry, C.
A1 - Petrov, M.
A1 - Pick, M. A.
A1 - Plancoulaine, J.
A1 - Poffe, J. P.
A1 - Pohlchen, R.
A1 - Porcelli, F.
A1 - Porte, L.
A1 - Prentice, R.
A1 - Puppin, S.
A1 - Putvinskii, S.
A1 - Radford, G.
A1 - Raimondi, T.
A1 - Deandrade, M. C. R.
A1 - Reichle, R.
A1 - Reid, J.
A1 - Richards, S.
A1 - Righi, E.
A1 - Rimini, F.
A1 - Robinson, D.
A1 - Rolfe, A.
A1 - Ross, R. T.
A1 - Rossi, L.
A1 - Russ, R.
A1 - Rutter, P.
A1 - Sack, H. C.
A1 - Sadler, G.
A1 - Saibene, G.
A1 - Salanave, J. L.
A1 - Sanazzaro, G.
A1 - Santagiustina, A.
A1 - Sartori, R.
A1 - Sborchia, C.
A1 - Schild, P.
A1 - Schmid, M.
A1 - Schmidt, G.
A1 - Schunke, B.
A1 - Scott, S. M.
A1 - Serio, L.
A1 - Sibley, A.
A1 - Simonini, R.
A1 - Sips, A.C.C.
A1 - Smeulders, P.
A1 - Smith, R.
A1 - Stagg, R.
A1 - Stamp, M.
A1 - Stangeby, P.
A1 - Stankiewicz, R.
A1 - Start, D. F.
A1 - Steed, C. A.
A1 - Stork, D.
A1 - Stott, P.E.
A1 - Stubberfield, P.
A1 - Summers, D.
A1 - Summers, H.
A1 - Svensson, L.
A1 - Tagle, J. A.
A1 - Talbot, M.
A1 - Tanga, A.
A1 - Taroni, A.
A1 - Terella, C.
A1 - Terrington, A.
A1 - Tesini, A.
A1 - Thomas, P. R.
A1 - Thompson, E.
A1 - Thomsen, K.
A1 - Tibone, F.
A1 - Tiscornia, A.
A1 - Trevalion, P.
A1 - Tubbing, B.
A1 - Vanbelle, P.
A1 - Vanderbeken, H.
A1 - Vlases, G.
A1 - von Hellermann, M.
A1 - Wade, T.
A1 - Walker, C.
A1 - Walton, R.
A1 - Ward, D.
A1 - Watkins, M. L.
A1 - Watkins, N.
A1 - Watson, M. J.
A1 - Weber, S.
A1 - Wesson, J.
A1 - Wijnands, T. J.
A1 - Wilks, J.
A1 - Wilson, D.
A1 - Winkel, T.
A1 - Wolf, R.
A1 - Wong, D.
A1 - Woodward, C.
A1 - Wu, Y.
A1 - Wykes, M.
A1 - Young, D.
A1 - Young, I. D.
A1 - Zannelli, L.
A1 - Zolfaghari, A.
A1 - Zwingmann, W.
AB - The paper describes a series of experiments in the Joint European Torus (JET), culminating in the first tokamak discharges in deuterium-tritium fuelled mixtures. The experiments were undertaken within limits imposed by restrictions on vessel activation and tritium usage. The objectives were: (i) to produce more than one megawatt of fusion power in a controlled way; (ii) to validate transport codes and provide a basis for accurately predicting the performance of deuterium-tritium plasma from measurements made in deuterium plasmas; (iii) to determine tritium retention in the torus systems and to establish the effectiveness of discharge cleaning techniques for tritium removal; (iv) to demonstrate the technology related to tritium usage; and (v) to establish safe procedures for handling tritium in compliance with the regulatory requirements. A single-null X-point magnetic configuration, diverted onto the upper carbon target, with reversed toroidal magnetic field was chosen. Deuterium plasmas were heated by high power, long duration deuterium neutral beams from fourteen sources and fuelled also by up to two neutral beam sources injecting tritium. The results from three of these high performance hot ion H-mode discharges are described: a high performance pure deuterium discharge; a deuterium-tritium discharge with a 1% mixture of tritium fed to one neutral beam source; and a deuterium-tritium discharge with 100% tritium fed to two neutral beam sources. The TRANSP code was used to check the internal consistency of the measured data and to determine the origin of the measured neutron fluxes. In the best deuterium-tritium discharge, the tritium concentration was about 11% at the time of peak performance, when the total neutron emission rate was 6.0 x 10(17) neutrons/s. The integrated total neutron yield over the high power phase, which lasted about 2 s, was 7.2 x 10(17) neutrons, with an accuracy of +/- 7%. The actual fusion amplification factor, Q(DT), was about 0.15. With an optimum tritium concentration, this pulse would have produced a fusion power of almost-equal-to 5 MW and a nominal Q(DT) almost-equal-to 0.46. The same extrapolation for the pure deuterium discharge would have given almost-equal-to 11 MW and a nominal Q(DT) = 1.14, so that the total fusion power (neutrons and alpha-particles) would have exceeded the total losses in the equivalent deuterium-tritium discharge in these transient conditions. Techniques for introducing, tracking, monitoring and recovering tritium were demonstrated to be highly effective: essentially all of the tritium introduced into the neutral beam system and, so far, about two thirds of that introduced into the torus have been recovered.
VL - 32
SN - 0029-5515
U5 - e65831798ed0c55ed964fef6ea71d10c
ER -