TY - JOUR
T1 - Overview of MAST results
JF - Nuclear Fusion
Y1 - 2015
A1 - Chapman, I.T.
A1 - Adamek, J.
A1 - Akers, R. J.
A1 - Allan, S.
A1 - Appel, L.
A1 - Asunta, O.
A1 - Barnes, M.
A1 - N. Ben Ayed
A1 - Hawke, J.
A1 - Bigelow, T.
A1 - Boeglin, W.
A1 - Bradley, J.
A1 - Brünner, J.
A1 - Cahyna, P.
A1 - Carr, M.
A1 - Caughman, J.
A1 - Cecconello, M.
A1 - Challis, C.
A1 - Chapman, S.
A1 - Chorley, J.
A1 - Colyer, G.
A1 - Conway, N.
A1 - Cooper, W. A.
A1 - Cox, M.
A1 - Crocker, N.
A1 - Crowley, B.
A1 - Cunningham, G.
A1 - Danilov, A.
A1 - Darrow, D.
A1 - Dendy, R.
A1 - Diallo, A.
A1 - Dickinson, D.
A1 - Diem, S.
A1 - Dorland, W.
A1 - Dudson, B.
A1 - Dunai, D.
A1 - Easy, L.
A1 - Elmore, S.
A1 - Field, A.
A1 - Fishpool, G.
A1 - Fox, M.
A1 - Fredrickson, E.
A1 - Freethy, S.
A1 - Garzotti, L.
A1 - Ghim, Y. C.
A1 - Gibson, K.
A1 - Graves, J.
A1 - Gurl, C.
A1 - Guttenfelder, W.
A1 - Ham, C.
A1 - Harrison, J.
A1 - Harting, D.
A1 - Havlickova, E.
A1 - Hawkes, N.
A1 - Hender, T.
A1 - Henderson, S.
A1 - Highcock, E.
A1 - Hillesheim, J.
A1 - Hnat, B.
A1 - Holgate, J.
A1 - Horacek, J.
A1 - Howard, J.
A1 - Huang, B.
A1 - Imada, K.
A1 - Jones, O.
A1 - S. Kaye
A1 - Keeling, D.
A1 - Kirk, A.
A1 - Klimek, I.
A1 - Kocan, M.
A1 - Leggate, H.
A1 - Lilley, M.
A1 - Lipschultz, B.
A1 - Lisgo, S.
A1 - Liu, Y. Q.
A1 - Lloyd, B.
A1 - Lomanowski, B.
A1 - Lupelli, I.
A1 - Maddison, G.
A1 - J. Mailloux
A1 - Martin, R.
A1 - McArdle, G.
A1 - McClements, K.
A1 - McMillan, B.
A1 - Meakins, A.
A1 - Meyer, H.
A1 - Michael, C.
A1 - Militello, F.
A1 - Milnes, J.
A1 - Morris, A. W.
A1 - Motojima, G.
A1 - Muir, D.
A1 - Nardon, E.
A1 - Naulin, V.
A1 - Naylor, G.
A1 - Nielsen, A.
A1 - O'Brien, M.
A1 - O'Gorman, T.
A1 - Ono, Y.
A1 - Oliver, H.
A1 - Pamela, S.
A1 - Pangioni, L.
A1 - Parra, F.
A1 - Patel, A.
A1 - Peebles, W.
A1 - Peng, M.
A1 - Perez, R.
A1 - Pinches, S.
A1 - Piron, L.
A1 - Podesta, M.
A1 - Price, M.
A1 - Reinke, M.
A1 - Ren, Y.
A1 - Roach, C.
A1 - Robinson, J.
A1 - Romanelli, M.
A1 - Rozhansky, V.
A1 - Saarelma, S.
A1 - Sangaroon, S.
A1 - Saveliev, A.
A1 - Scannell, R.
A1 - Schekochihin, A.
A1 - Sharapov, S.
A1 - Sharples, R.
A1 - Shevchenko, V.
A1 - Silburn, S.
A1 - J. Simpson
A1 - Storrs, J.
A1 - Takase, Y.
A1 - Tanabe, H.
A1 - Tanaka, H.
A1 - Taylor, D.
A1 - Taylor, G.
A1 - Thomas, D.
A1 - Thomas-Davies, N.
A1 - Thornton, A.
A1 - Turnyanskiy, M.
A1 - Valovic, M.
A1 - Vann, R.
A1 - Walkden, N.
A1 - Wilson, H.
A1 - Wyk, L. V.
A1 - Yamada, T.
A1 - Zoletnik, S.
A1 - MAST Team
A1 - MAST Upgrade Teams
VL - 55
IS - 10
U1 - FP
U2 - TP
U5 - 9d7b191e90422e8ed8bcf2078b75987f
ER -
TY - JOUR
T1 - Advanced divertor configurations with large flux expansion
JF - Journal of Nuclear Materials
Y1 - 2013
A1 - Soukhanovskii, V. A.
A1 - R.E. Bell
A1 - Diallo, A.
A1 - S. Gerhardt
A1 - S. Kaye
A1 - E. Kolemen
A1 - B.P. LeBlanc
A1 - McLean, A.
A1 - Menard, J. E.
A1 - S.F. Paul
A1 - Podesta, M.
A1 - Raman, R.
A1 - D.D. Ryutov
A1 - F. Scotti
A1 - Kaita, R.
A1 - Maingi, R.
A1 - D.M. Mueller
A1 - Roquemore, A. L.
A1 - Reimerdes, H.
A1 - G.P. Canal
A1 - Labit, B.
A1 - Vijvers, W.
A1 - Coda, S.
A1 - Duval, B. P.
A1 - Morgan, T.
A1 - Zielinski, J.
A1 - De Temmerman, G.
A1 - Tal, B.
AB - Experimental studies of the novel snowflake divertor concept (D. Ryutov, Phys. Plasmas 14 (2007) 064502) performed in the NSTX and TCV tokamaks are reviewed in this paper. The snowflake divertor enables power sharing between divertor strike points, as well as the divertor plasma-wetted area, effective connection length and divertor volumetric power loss to increase beyond those in the standard divertor, potentially reducing heat flux and plasma temperature at the target. It also enables higher magnetic shear inside the separatrix, potentially affecting pedestal MHD stability. Experimental results from NSTX and TCV confirm the predicted properties of the snowflake divertor. In the NSTX, a large spherical tokamak with a compact divertor and lithium-coated graphite plasma-facing components (PFCs), the snowflake divertor operation led to reduced core and pedestal impurity concentration, as well as re-appearance of Type I ELMs that were suppressed in standard divertor H-mode discharges. In the divertor, an otherwise inaccessible partial detachment of the outer strike point with an up to 50% increase in divertor radiation and a peak divertor heat flux reduction from 3–7 MW/m2 to 0.5–1 MW/m2 was achieved. Impulsive heat fluxes due to Type-I ELMs were significantly dissipated in the high magnetic flux expansion region. In the TCV, a medium-size tokamak with graphite PFCs, several advantageous snowflake divertor features (cf. the standard divertor) have been demonstrated: an unchanged L–H power threshold, enhanced stability of the peeling–ballooning modes in the pedestal region (and generally an extended second stability region), as well as an H-mode pedestal regime with reduced (×2–3) Type I ELM frequency and slightly increased (20–30%) normalized ELM energy, resulting in a favorable average energy loss comparison to the standard divertor. In the divertor, ELM power partitioning between snowflake divertor strike points was demonstrated. The NSTX and TCV experiments are providing support for the snowflake divertor as a viable solution for the outstanding tokamak plasma–material interface issues.
VL - 438, Supplement
UR - http://www.sciencedirect.com/science/article/pii/S0022311513000238
N1 - Proceedings of the 20th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices
U1 - PSI
U2 - PSI-E
U5 - 12367ceb1d7611691a25a587c02a11b8
ER -
TY - JOUR
T1 - Spatial heterodyne spectro-polarimetry systems for imaging key plasma parameters in fusion devices
JF - Plasma and Fusion Research
Y1 - 2010
A1 - Howard, J.
A1 - Diallo, A.
A1 - R. Jaspers
A1 - Chung, J.
VL - 5
U1 - Fusion Physics
U5 - 3d23415d62fd4b00dbf736f991955ce2
ER -